File size: 18,365 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT


====================================
Logical Inference and Model Building

====================================

    >>> from nltk.test.setup_fixt import check_binary
    >>> check_binary('mace4')

    >>> from nltk import *
    >>> from nltk.sem.drt import DrtParser
    >>> from nltk.sem import logic
    >>> logic._counter._value = 0


------------
Introduction

------------

Within the area of automated reasoning, first order theorem proving
and model building (or model generation) have both received much
attention, and have given rise to highly sophisticated techniques. We
focus therefore on providing an NLTK interface to third party tools
for these tasks.  In particular, the module ``nltk.inference`` can be
used to access both theorem provers and model builders.


---------------------------------
NLTK Interface to Theorem Provers

---------------------------------

The main class used to interface with a theorem prover is the ``Prover``
class, found in ``nltk.api``.  The ``prove()`` method takes three optional
arguments: a goal, a list of assumptions, and a ``verbose`` boolean to
indicate whether the proof should be printed to the console.  The proof goal
and any assumptions need to be instances of the ``Expression`` class
specified by ``nltk.sem.logic``.  There are currently three theorem provers
included with NLTK: ``Prover9``, ``TableauProver``, and
``ResolutionProver``.  The first is an off-the-shelf prover, while the other
two are written in Python and included in the ``nltk.inference`` package.

    >>> from nltk.sem import Expression
    >>> read_expr = Expression.fromstring
    >>> p1 = read_expr('man(socrates)')
    >>> p2 = read_expr('all x.(man(x) -> mortal(x))')
    >>> c  = read_expr('mortal(socrates)')
    >>> Prover9().prove(c, [p1,p2])
    True
    >>> TableauProver().prove(c, [p1,p2])
    True
    >>> ResolutionProver().prove(c, [p1,p2], verbose=True)
    [1] {-mortal(socrates)}     A
    [2] {man(socrates)}         A
    [3] {-man(z2), mortal(z2)}  A
    [4] {-man(socrates)}        (1, 3)
    [5] {mortal(socrates)}      (2, 3)
    [6] {}                      (1, 5)
    <BLANKLINE>
    True


---------------------
The ``ProverCommand``

---------------------

A ``ProverCommand`` is a stateful holder for a theorem
prover.  The command stores a theorem prover instance (of type ``Prover``),
a goal, a list of assumptions, the result of the proof, and a string version
of the entire proof.  Corresponding to the three included ``Prover``
implementations, there are three ``ProverCommand`` implementations:
``Prover9Command``, ``TableauProverCommand``, and
``ResolutionProverCommand``.

The ``ProverCommand``'s constructor takes its goal and assumptions.  The
``prove()`` command executes the ``Prover`` and ``proof()``
returns a String form of the proof
If the ``prove()`` method has not been called,
then the prover command will be unable to display a proof.

    >>> prover = ResolutionProverCommand(c, [p1,p2])
    >>> print(prover.proof())
    Traceback (most recent call last):
      File "...", line 1212, in __run
        compileflags, 1) in test.globs
      File "<doctest nltk/test/inference.doctest[10]>", line 1, in <module>
      File "...", line ..., in proof
        raise LookupError("You have to call prove() first to get a proof!")
    LookupError: You have to call prove() first to get a proof!
    >>> prover.prove()
    True
    >>> print(prover.proof())
    [1] {-mortal(socrates)}     A
    [2] {man(socrates)}         A
    [3] {-man(z4), mortal(z4)}  A
    [4] {-man(socrates)}        (1, 3)
    [5] {mortal(socrates)}      (2, 3)
    [6] {}                      (1, 5)
    <BLANKLINE>

The prover command stores the result of proving so that if ``prove()`` is
called again, then the command can return the result without executing the
prover again.  This allows the user to access the result of the proof without
wasting time re-computing what it already knows.

    >>> prover.prove()
    True
    >>> prover.prove()
    True

The assumptions and goal may be accessed using the ``assumptions()`` and
``goal()`` methods, respectively.

    >>> prover.assumptions()
    [<ApplicationExpression man(socrates)>, <AllExpression all x.(man(x) -> mortal(x))>]
    >>> prover.goal()
    <ApplicationExpression mortal(socrates)>

The assumptions list may be modified using the ``add_assumptions()`` and
``retract_assumptions()`` methods.  Both methods take a list of ``Expression``
objects.  Since adding or removing assumptions may change the result of the
proof, the stored result is cleared when either of these methods are called.
That means that ``proof()`` will be unavailable until ``prove()`` is called and
a call to ``prove()`` will execute the theorem prover.

    >>> prover.retract_assumptions([read_expr('man(socrates)')])
    >>> print(prover.proof())
    Traceback (most recent call last):
      File "...", line 1212, in __run
        compileflags, 1) in test.globs
      File "<doctest nltk/test/inference.doctest[10]>", line 1, in <module>
      File "...", line ..., in proof
        raise LookupError("You have to call prove() first to get a proof!")
    LookupError: You have to call prove() first to get a proof!
    >>> prover.prove()
    False
    >>> print(prover.proof())
    [1] {-mortal(socrates)}     A
    [2] {-man(z6), mortal(z6)}  A
    [3] {-man(socrates)}        (1, 2)
    <BLANKLINE>
    >>> prover.add_assumptions([read_expr('man(socrates)')])
    >>> prover.prove()
    True


-------
Prover9

-------

Prover9 Installation

~~~~~~~~~~~~~~~~~~~~

You can download Prover9 from https://www.cs.unm.edu/~mccune/prover9/.

Extract the source code into a suitable directory and follow the
instructions in the Prover9 ``README.make`` file to compile the executables.
Install these into an appropriate location; the
``prover9_search`` variable is currently configured to look in the
following locations:

    >>> p = Prover9()
    >>> p.binary_locations()
    ['/usr/local/bin/prover9',
     '/usr/local/bin/prover9/bin',
     '/usr/local/bin',
     '/usr/bin',
     '/usr/local/prover9',
     '/usr/local/share/prover9']

Alternatively, the environment variable ``PROVER9HOME`` may be configured with
the binary's location.

The path to the correct directory can be set manually in the following
manner:

    >>> config_prover9(path='/usr/local/bin') # doctest: +SKIP
    [Found prover9: /usr/local/bin/prover9]

If the executables cannot be found, ``Prover9`` will issue a warning message:

    >>> p.prove() # doctest: +SKIP
    Traceback (most recent call last):
      ...
    LookupError:
    ===========================================================================
      NLTK was unable to find the prover9 executable!  Use config_prover9() or
      set the PROVER9HOME environment variable.
    <BLANKLINE>
        >> config_prover9('/path/to/prover9')
    <BLANKLINE>
      For more information, on prover9, see:
        <https://www.cs.unm.edu/~mccune/prover9/>
    ===========================================================================


Using Prover9

~~~~~~~~~~~~~

The general case in theorem proving is to determine whether ``S |- g``
holds, where ``S`` is a possibly empty set of assumptions, and ``g``
is a proof goal.

As mentioned earlier, NLTK input to ``Prover9`` must be
``Expression``\ s of ``nltk.sem.logic``. A ``Prover9`` instance is
initialized with a proof goal and, possibly, some assumptions. The
``prove()`` method attempts to find a proof of the goal, given the
list of assumptions (in this case, none).

    >>> goal = read_expr('(man(x) <-> --man(x))')
    >>> prover = Prover9Command(goal)
    >>> prover.prove()
    True

Given a ``ProverCommand`` instance ``prover``, the method
``prover.proof()`` will return a String of the extensive proof information
provided by Prover9, shown in abbreviated form here::



    ============================== Prover9 ===============================
    Prover9 (32) version ...
    Process ... was started by ... on ...
    ...
    The command was ".../prover9 -f ...".
    ============================== end of head ===========================

    ============================== INPUT =================================

    % Reading from file /var/...


    formulas(goals).
    (all x (man(x) -> man(x))).
    end_of_list.

    ...
    ============================== end of search =========================

    THEOREM PROVED

    Exiting with 1 proof.

    Process 6317 exit (max_proofs) Mon Jan 21 15:23:28 2008


As mentioned earlier, we may want to list some assumptions for
the proof, as shown here.

    >>> g = read_expr('mortal(socrates)')
    >>> a1 = read_expr('all x.(man(x) -> mortal(x))')
    >>> prover = Prover9Command(g, assumptions=[a1])
    >>> prover.print_assumptions()
    all x.(man(x) -> mortal(x))

However, the assumptions are not sufficient to derive the goal:

    >>> print(prover.prove())
    False

So let's add another assumption:

    >>> a2 = read_expr('man(socrates)')
    >>> prover.add_assumptions([a2])
    >>> prover.print_assumptions()
    all x.(man(x) -> mortal(x))
    man(socrates)
    >>> print(prover.prove())
    True

We can also show the assumptions in ``Prover9`` format.

    >>> prover.print_assumptions(output_format='Prover9')
    all x (man(x) -> mortal(x))
    man(socrates)

    >>> prover.print_assumptions(output_format='Spass')
    Traceback (most recent call last):
      . . .
    NameError: Unrecognized value for 'output_format': Spass

Assumptions can be retracted from the list of assumptions.

    >>> prover.retract_assumptions([a1])
    >>> prover.print_assumptions()
    man(socrates)
    >>> prover.retract_assumptions([a1])

Statements can be loaded from a file and parsed. We can then add these
statements as new assumptions.

    >>> g = read_expr('all x.(boxer(x) -> -boxerdog(x))')
    >>> prover = Prover9Command(g)
    >>> prover.prove()
    False
    >>> import nltk.data
    >>> new = nltk.data.load('grammars/sample_grammars/background0.fol')
    >>> for a in new:
    ...     print(a)
    all x.(boxerdog(x) -> dog(x))
    all x.(boxer(x) -> person(x))
    all x.-(dog(x) & person(x))
    exists x.boxer(x)
    exists x.boxerdog(x)
    >>> prover.add_assumptions(new)
    >>> print(prover.prove())
    True
    >>> print(prover.proof())
    ============================== prooftrans ============================
    Prover9 (...) version ...
    Process ... was started by ... on ...
    ...
    The command was ".../prover9".
    ============================== end of head ===========================
    <BLANKLINE>
    ============================== end of input ==========================
    <BLANKLINE>
    ============================== PROOF =================================
    <BLANKLINE>
    % -------- Comments from original proof --------
    % Proof 1 at ... seconds.
    % Length of proof is 13.
    % Level of proof is 4.
    % Maximum clause weight is 0.
    % Given clauses 0.
    <BLANKLINE>
    1 (all x (boxerdog(x) -> dog(x))).  [assumption].
    2 (all x (boxer(x) -> person(x))).  [assumption].
    3 (all x -(dog(x) & person(x))).  [assumption].
    6 (all x (boxer(x) -> -boxerdog(x))).  [goal].
    8 -boxerdog(x) | dog(x).  [clausify(1)].
    9 boxerdog(c3).  [deny(6)].
    11 -boxer(x) | person(x).  [clausify(2)].
    12 boxer(c3).  [deny(6)].
    14 -dog(x) | -person(x).  [clausify(3)].
    15 dog(c3).  [resolve(9,a,8,a)].
    18 person(c3).  [resolve(12,a,11,a)].
    19 -person(c3).  [resolve(15,a,14,a)].
    20 $F.  [resolve(19,a,18,a)].
    <BLANKLINE>
    ============================== end of proof ==========================


----------------------
The equiv() method

----------------------

One application of the theorem prover functionality is to check if
two Expressions have the same meaning.
The ``equiv()`` method calls a theorem prover to determine whether two
Expressions are logically equivalent.

    >>> a = read_expr(r'exists x.(man(x) & walks(x))')
    >>> b = read_expr(r'exists x.(walks(x) & man(x))')
    >>> print(a.equiv(b))
    True

The same method can be used on Discourse Representation Structures (DRSs).
In this case, each DRS is converted to a first order logic form, and then
passed to the theorem prover.

    >>> dp = DrtParser()
    >>> a = dp.parse(r'([x],[man(x), walks(x)])')
    >>> b = dp.parse(r'([x],[walks(x), man(x)])')
    >>> print(a.equiv(b))
    True



--------------------------------
NLTK Interface to Model Builders

--------------------------------

The top-level to model builders is parallel to that for
theorem-provers. The ``ModelBuilder`` interface is located
in ``nltk.inference.api``.  It is currently only implemented by
``Mace``, which interfaces with the Mace4 model builder.

Typically we use a model builder to show that some set of formulas has
a model, and is therefore consistent. One way of doing this is by
treating our candidate set of sentences as assumptions, and leaving
the goal unspecified.
Thus, the following interaction shows how both ``{a, c1}`` and ``{a, c2}``
are consistent sets, since Mace succeeds in a building a
model for each of them, while ``{c1, c2}`` is inconsistent.

    >>> a3 = read_expr('exists x.(man(x) and walks(x))')
    >>> c1 = read_expr('mortal(socrates)')
    >>> c2 = read_expr('-mortal(socrates)')
    >>> mace = Mace()
    >>> print(mace.build_model(None, [a3, c1]))
    True
    >>> print(mace.build_model(None, [a3, c2]))
    True

We can also use the model builder as an adjunct to theorem prover.
Let's suppose we are trying to prove ``S |- g``, i.e. that ``g``
is logically entailed by assumptions ``S = {s1, s2, ..., sn}``.
We can this same input to Mace4, and the model builder will try to
find a counterexample, that is, to show that ``g`` does *not* follow
from ``S``. So, given this input, Mace4 will try to find a model for
the set ``S' = {s1, s2, ..., sn, (not g)}``. If ``g`` fails to follow

from ``S``, then Mace4 may well return with a counterexample faster

than Prover9 concludes that it cannot find the required proof.

Conversely, if ``g`` *is* provable from ``S``, Mace4 may take a long

time unsuccessfully trying to find a counter model, and will eventually give up.



In the following example, we see that the model builder does succeed

in building a model of the assumptions together with the negation of

the goal. That is, it succeeds in finding a model

where there is a woman that every man loves; Adam is a man; Eve is a

woman; but Adam does not love Eve.



    >>> a4 = read_expr('exists y. (woman(y) & all x. (man(x) -> love(x,y)))')

    >>> a5 = read_expr('man(adam)')

    >>> a6 = read_expr('woman(eve)')

    >>> g = read_expr('love(adam,eve)')

    >>> print(mace.build_model(g, [a4, a5, a6]))

    True



The Model Builder will fail to find a model if the assumptions do entail

the goal.  Mace will continue to look for models of ever-increasing sizes

until the end_size number is reached.  By default, end_size is 500,

but it can be set manually for quicker response time.



    >>> a7 = read_expr('all x.(man(x) -> mortal(x))')

    >>> a8 = read_expr('man(socrates)')

    >>> g2 = read_expr('mortal(socrates)')

    >>> print(Mace(end_size=50).build_model(g2, [a7, a8]))

    False



There is also a ``ModelBuilderCommand`` class that, like ``ProverCommand``,

stores a ``ModelBuilder``, a goal, assumptions, a result, and a model.  The

only implementation in NLTK is ``MaceCommand``.





-----

Mace4

-----



Mace4 Installation

~~~~~~~~~~~~~~~~~~



Mace4 is packaged with Prover9, and can be downloaded from the same

source, namely https://www.cs.unm.edu/~mccune/prover9/. It is installed

in the same manner as Prover9.



Using Mace4

~~~~~~~~~~~



Check whether Mace4 can find a model.



    >>> a = read_expr('(see(mary,john) & -(mary = john))')

    >>> mb = MaceCommand(assumptions=[a])

    >>> mb.build_model()

    True



Show the model in 'tabular' format.



    >>> print(mb.model(format='tabular'))

    % number = 1

    % seconds = 0

    <BLANKLINE>

    % Interpretation of size 2

    <BLANKLINE>

     john : 0

    <BLANKLINE>

     mary : 1

    <BLANKLINE>

     see :

           | 0 1

        ---+----

         0 | 0 0

         1 | 1 0

    <BLANKLINE>



Show the model in 'tabular' format.



    >>> print(mb.model(format='cooked'))

    % number = 1

    % seconds = 0

    <BLANKLINE>

    % Interpretation of size 2

    <BLANKLINE>

    john = 0.

    <BLANKLINE>

    mary = 1.

    <BLANKLINE>

    - see(0,0).

    - see(0,1).

      see(1,0).

    - see(1,1).

    <BLANKLINE>



The property ``valuation`` accesses the stored ``Valuation``.



    >>> print(mb.valuation)

    {'john': 'a', 'mary': 'b', 'see': {('b', 'a')}}



We can return to our earlier example and inspect the model:



    >>> mb = MaceCommand(g, assumptions=[a4, a5, a6])

    >>> m = mb.build_model()

    >>> print(mb.model(format='cooked'))

    % number = 1

    % seconds = 0

    <BLANKLINE>

    % Interpretation of size 2

    <BLANKLINE>

    adam = 0.

    <BLANKLINE>

    eve = 0.

    <BLANKLINE>

    c1 = 1.

    <BLANKLINE>

      man(0).

    - man(1).

    <BLANKLINE>

      woman(0).

      woman(1).

    <BLANKLINE>

    - love(0,0).

      love(0,1).

    - love(1,0).

    - love(1,1).

    <BLANKLINE>



Here, we can see that ``adam`` and ``eve`` have been assigned the same

individual, namely ``0`` as value; ``0`` is both a man and a woman; a second

individual ``1`` is also a woman; and ``0`` loves ``1``. Thus, this is

an interpretation in which there is a woman that every man loves but

Adam doesn't love Eve.



Mace can also be used with propositional logic.



    >>> p = read_expr('P')

    >>> q = read_expr('Q')

    >>> mb = MaceCommand(q, [p, p>-q])

    >>> mb.build_model()

    True

    >>> mb.valuation['P']

    True

    >>> mb.valuation['Q']

    False