File size: 28,372 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
"""

Porter Stemmer



This is the Porter stemming algorithm. It follows the algorithm

presented in



Porter, M. "An algorithm for suffix stripping." Program 14.3 (1980): 130-137.



with some optional deviations that can be turned on or off with the

`mode` argument to the constructor.



Martin Porter, the algorithm's inventor, maintains a web page about the

algorithm at



    https://www.tartarus.org/~martin/PorterStemmer/



which includes another Python implementation and other implementations

in many languages.

"""

__docformat__ = "plaintext"

import re

from nltk.stem.api import StemmerI


class PorterStemmer(StemmerI):
    """

    A word stemmer based on the Porter stemming algorithm.



        Porter, M. "An algorithm for suffix stripping."

        Program 14.3 (1980): 130-137.



    See https://www.tartarus.org/~martin/PorterStemmer/ for the homepage

    of the algorithm.



    Martin Porter has endorsed several modifications to the Porter

    algorithm since writing his original paper, and those extensions are

    included in the implementations on his website. Additionally, others

    have proposed further improvements to the algorithm, including NLTK

    contributors. There are thus three modes that can be selected by

    passing the appropriate constant to the class constructor's `mode`

    attribute:



    - PorterStemmer.ORIGINAL_ALGORITHM



        An implementation that is faithful to the original paper.



        Note that Martin Porter has deprecated this version of the

        algorithm. Martin distributes implementations of the Porter

        Stemmer in many languages, hosted at:



        https://www.tartarus.org/~martin/PorterStemmer/



        and all of these implementations include his extensions. He

        strongly recommends against using the original, published

        version of the algorithm; only use this mode if you clearly

        understand why you are choosing to do so.



    - PorterStemmer.MARTIN_EXTENSIONS



        An implementation that only uses the modifications to the

        algorithm that are included in the implementations on Martin

        Porter's website. He has declared Porter frozen, so the

        behaviour of those implementations should never change.



    - PorterStemmer.NLTK_EXTENSIONS (default)



        An implementation that includes further improvements devised by

        NLTK contributors or taken from other modified implementations

        found on the web.



    For the best stemming, you should use the default NLTK_EXTENSIONS

    version. However, if you need to get the same results as either the

    original algorithm or one of Martin Porter's hosted versions for

    compatibility with an existing implementation or dataset, you can use

    one of the other modes instead.

    """

    # Modes the Stemmer can be instantiated in
    NLTK_EXTENSIONS = "NLTK_EXTENSIONS"
    MARTIN_EXTENSIONS = "MARTIN_EXTENSIONS"
    ORIGINAL_ALGORITHM = "ORIGINAL_ALGORITHM"

    def __init__(self, mode=NLTK_EXTENSIONS):
        if mode not in (
            self.NLTK_EXTENSIONS,
            self.MARTIN_EXTENSIONS,
            self.ORIGINAL_ALGORITHM,
        ):
            raise ValueError(
                "Mode must be one of PorterStemmer.NLTK_EXTENSIONS, "
                "PorterStemmer.MARTIN_EXTENSIONS, or "
                "PorterStemmer.ORIGINAL_ALGORITHM"
            )

        self.mode = mode

        if self.mode == self.NLTK_EXTENSIONS:
            # This is a table of irregular forms. It is quite short,
            # but still reflects the errors actually drawn to Martin
            # Porter's attention over a 20 year period!
            irregular_forms = {
                "sky": ["sky", "skies"],
                "die": ["dying"],
                "lie": ["lying"],
                "tie": ["tying"],
                "news": ["news"],
                "inning": ["innings", "inning"],
                "outing": ["outings", "outing"],
                "canning": ["cannings", "canning"],
                "howe": ["howe"],
                "proceed": ["proceed"],
                "exceed": ["exceed"],
                "succeed": ["succeed"],
            }

            self.pool = {}
            for key in irregular_forms:
                for val in irregular_forms[key]:
                    self.pool[val] = key

        self.vowels = frozenset(["a", "e", "i", "o", "u"])

    def _is_consonant(self, word, i):
        """Returns True if word[i] is a consonant, False otherwise



        A consonant is defined in the paper as follows:



            A consonant in a word is a letter other than A, E, I, O or

            U, and other than Y preceded by a consonant. (The fact that

            the term `consonant' is defined to some extent in terms of

            itself does not make it ambiguous.) So in TOY the consonants

            are T and Y, and in SYZYGY they are S, Z and G. If a letter

            is not a consonant it is a vowel.

        """
        if word[i] in self.vowels:
            return False
        if word[i] == "y":
            if i == 0:
                return True
            else:
                return not self._is_consonant(word, i - 1)
        return True

    def _measure(self, stem):
        r"""Returns the 'measure' of stem, per definition in the paper



        From the paper:



            A consonant will be denoted by c, a vowel by v. A list

            ccc... of length greater than 0 will be denoted by C, and a

            list vvv... of length greater than 0 will be denoted by V.

            Any word, or part of a word, therefore has one of the four

            forms:



                CVCV ... C

                CVCV ... V

                VCVC ... C

                VCVC ... V



            These may all be represented by the single form



                [C]VCVC ... [V]



            where the square brackets denote arbitrary presence of their

            contents. Using (VC){m} to denote VC repeated m times, this

            may again be written as



                [C](VC){m}[V].



            m will be called the \measure\ of any word or word part when

            represented in this form. The case m = 0 covers the null

            word. Here are some examples:



                m=0    TR,  EE,  TREE,  Y,  BY.

                m=1    TROUBLE,  OATS,  TREES,  IVY.

                m=2    TROUBLES,  PRIVATE,  OATEN,  ORRERY.

        """
        cv_sequence = ""

        # Construct a string of 'c's and 'v's representing whether each
        # character in `stem` is a consonant or a vowel.
        # e.g. 'falafel' becomes 'cvcvcvc',
        #      'architecture' becomes 'vcccvcvccvcv'
        for i in range(len(stem)):
            if self._is_consonant(stem, i):
                cv_sequence += "c"
            else:
                cv_sequence += "v"

        # Count the number of 'vc' occurrences, which is equivalent to
        # the number of 'VC' occurrences in Porter's reduced form in the
        # docstring above, which is in turn equivalent to `m`
        return cv_sequence.count("vc")

    def _has_positive_measure(self, stem):
        return self._measure(stem) > 0

    def _contains_vowel(self, stem):
        """Returns True if stem contains a vowel, else False"""
        for i in range(len(stem)):
            if not self._is_consonant(stem, i):
                return True
        return False

    def _ends_double_consonant(self, word):
        """Implements condition *d from the paper



        Returns True if word ends with a double consonant

        """
        return (
            len(word) >= 2
            and word[-1] == word[-2]
            and self._is_consonant(word, len(word) - 1)
        )

    def _ends_cvc(self, word):
        """Implements condition *o from the paper



        From the paper:



            *o  - the stem ends cvc, where the second c is not W, X or Y

                  (e.g. -WIL, -HOP).

        """
        return (
            len(word) >= 3
            and self._is_consonant(word, len(word) - 3)
            and not self._is_consonant(word, len(word) - 2)
            and self._is_consonant(word, len(word) - 1)
            and word[-1] not in ("w", "x", "y")
        ) or (
            self.mode == self.NLTK_EXTENSIONS
            and len(word) == 2
            and not self._is_consonant(word, 0)
            and self._is_consonant(word, 1)
        )

    def _replace_suffix(self, word, suffix, replacement):
        """Replaces `suffix` of `word` with `replacement"""
        assert word.endswith(suffix), "Given word doesn't end with given suffix"
        if suffix == "":
            return word + replacement
        else:
            return word[: -len(suffix)] + replacement

    def _apply_rule_list(self, word, rules):
        """Applies the first applicable suffix-removal rule to the word



        Takes a word and a list of suffix-removal rules represented as

        3-tuples, with the first element being the suffix to remove,

        the second element being the string to replace it with, and the

        final element being the condition for the rule to be applicable,

        or None if the rule is unconditional.

        """
        for rule in rules:
            suffix, replacement, condition = rule
            if suffix == "*d" and self._ends_double_consonant(word):
                stem = word[:-2]
                if condition is None or condition(stem):
                    return stem + replacement
                else:
                    # Don't try any further rules
                    return word
            if word.endswith(suffix):
                stem = self._replace_suffix(word, suffix, "")
                if condition is None or condition(stem):
                    return stem + replacement
                else:
                    # Don't try any further rules
                    return word

        return word

    def _step1a(self, word):
        """Implements Step 1a from "An algorithm for suffix stripping"



        From the paper:



            SSES -> SS                         caresses  ->  caress

            IES  -> I                          ponies    ->  poni

                                               ties      ->  ti

            SS   -> SS                         caress    ->  caress

            S    ->                            cats      ->  cat

        """
        # this NLTK-only rule extends the original algorithm, so
        # that 'flies'->'fli' but 'dies'->'die' etc
        if self.mode == self.NLTK_EXTENSIONS:
            if word.endswith("ies") and len(word) == 4:
                return self._replace_suffix(word, "ies", "ie")

        return self._apply_rule_list(
            word,
            [
                ("sses", "ss", None),  # SSES -> SS
                ("ies", "i", None),  # IES  -> I
                ("ss", "ss", None),  # SS   -> SS
                ("s", "", None),  # S    ->
            ],
        )

    def _step1b(self, word):
        """Implements Step 1b from "An algorithm for suffix stripping"



        From the paper:



            (m>0) EED -> EE                    feed      ->  feed

                                               agreed    ->  agree

            (*v*) ED  ->                       plastered ->  plaster

                                               bled      ->  bled

            (*v*) ING ->                       motoring  ->  motor

                                               sing      ->  sing



        If the second or third of the rules in Step 1b is successful,

        the following is done:



            AT -> ATE                       conflat(ed)  ->  conflate

            BL -> BLE                       troubl(ed)   ->  trouble

            IZ -> IZE                       siz(ed)      ->  size

            (*d and not (*L or *S or *Z))

               -> single letter

                                            hopp(ing)    ->  hop

                                            tann(ed)     ->  tan

                                            fall(ing)    ->  fall

                                            hiss(ing)    ->  hiss

                                            fizz(ed)     ->  fizz

            (m=1 and *o) -> E               fail(ing)    ->  fail

                                            fil(ing)     ->  file



        The rule to map to a single letter causes the removal of one of

        the double letter pair. The -E is put back on -AT, -BL and -IZ,

        so that the suffixes -ATE, -BLE and -IZE can be recognised

        later. This E may be removed in step 4.

        """
        # this NLTK-only block extends the original algorithm, so that
        # 'spied'->'spi' but 'died'->'die' etc
        if self.mode == self.NLTK_EXTENSIONS:
            if word.endswith("ied"):
                if len(word) == 4:
                    return self._replace_suffix(word, "ied", "ie")
                else:
                    return self._replace_suffix(word, "ied", "i")

        # (m>0) EED -> EE
        if word.endswith("eed"):
            stem = self._replace_suffix(word, "eed", "")
            if self._measure(stem) > 0:
                return stem + "ee"
            else:
                return word

        rule_2_or_3_succeeded = False

        for suffix in ["ed", "ing"]:
            if word.endswith(suffix):
                intermediate_stem = self._replace_suffix(word, suffix, "")
                if self._contains_vowel(intermediate_stem):
                    rule_2_or_3_succeeded = True
                    break

        if not rule_2_or_3_succeeded:
            return word

        return self._apply_rule_list(
            intermediate_stem,
            [
                ("at", "ate", None),  # AT -> ATE
                ("bl", "ble", None),  # BL -> BLE
                ("iz", "ize", None),  # IZ -> IZE
                # (*d and not (*L or *S or *Z))
                # -> single letter
                (
                    "*d",
                    intermediate_stem[-1],
                    lambda stem: intermediate_stem[-1] not in ("l", "s", "z"),
                ),
                # (m=1 and *o) -> E
                (
                    "",
                    "e",
                    lambda stem: (self._measure(stem) == 1 and self._ends_cvc(stem)),
                ),
            ],
        )

    def _step1c(self, word):
        """Implements Step 1c from "An algorithm for suffix stripping"



        From the paper:



        Step 1c



            (*v*) Y -> I                    happy        ->  happi

                                            sky          ->  sky

        """

        def nltk_condition(stem):
            """

            This has been modified from the original Porter algorithm so

            that y->i is only done when y is preceded by a consonant,

            but not if the stem is only a single consonant, i.e.



               (*c and not c) Y -> I



            So 'happy' -> 'happi', but

               'enjoy' -> 'enjoy'  etc



            This is a much better rule. Formerly 'enjoy'->'enjoi' and

            'enjoyment'->'enjoy'. Step 1c is perhaps done too soon; but

            with this modification that no longer really matters.



            Also, the removal of the contains_vowel(z) condition means

            that 'spy', 'fly', 'try' ... stem to 'spi', 'fli', 'tri' and

            conflate with 'spied', 'tried', 'flies' ...

            """
            return len(stem) > 1 and self._is_consonant(stem, len(stem) - 1)

        def original_condition(stem):
            return self._contains_vowel(stem)

        return self._apply_rule_list(
            word,
            [
                (
                    "y",
                    "i",
                    nltk_condition
                    if self.mode == self.NLTK_EXTENSIONS
                    else original_condition,
                )
            ],
        )

    def _step2(self, word):
        """Implements Step 2 from "An algorithm for suffix stripping"



        From the paper:



        Step 2



            (m>0) ATIONAL ->  ATE       relational     ->  relate

            (m>0) TIONAL  ->  TION      conditional    ->  condition

                                        rational       ->  rational

            (m>0) ENCI    ->  ENCE      valenci        ->  valence

            (m>0) ANCI    ->  ANCE      hesitanci      ->  hesitance

            (m>0) IZER    ->  IZE       digitizer      ->  digitize

            (m>0) ABLI    ->  ABLE      conformabli    ->  conformable

            (m>0) ALLI    ->  AL        radicalli      ->  radical

            (m>0) ENTLI   ->  ENT       differentli    ->  different

            (m>0) ELI     ->  E         vileli        - >  vile

            (m>0) OUSLI   ->  OUS       analogousli    ->  analogous

            (m>0) IZATION ->  IZE       vietnamization ->  vietnamize

            (m>0) ATION   ->  ATE       predication    ->  predicate

            (m>0) ATOR    ->  ATE       operator       ->  operate

            (m>0) ALISM   ->  AL        feudalism      ->  feudal

            (m>0) IVENESS ->  IVE       decisiveness   ->  decisive

            (m>0) FULNESS ->  FUL       hopefulness    ->  hopeful

            (m>0) OUSNESS ->  OUS       callousness    ->  callous

            (m>0) ALITI   ->  AL        formaliti      ->  formal

            (m>0) IVITI   ->  IVE       sensitiviti    ->  sensitive

            (m>0) BILITI  ->  BLE       sensibiliti    ->  sensible

        """

        if self.mode == self.NLTK_EXTENSIONS:
            # Instead of applying the ALLI -> AL rule after '(a)bli' per
            # the published algorithm, instead we apply it first, and,
            # if it succeeds, run the result through step2 again.
            if word.endswith("alli") and self._has_positive_measure(
                self._replace_suffix(word, "alli", "")
            ):
                return self._step2(self._replace_suffix(word, "alli", "al"))

        bli_rule = ("bli", "ble", self._has_positive_measure)
        abli_rule = ("abli", "able", self._has_positive_measure)

        rules = [
            ("ational", "ate", self._has_positive_measure),
            ("tional", "tion", self._has_positive_measure),
            ("enci", "ence", self._has_positive_measure),
            ("anci", "ance", self._has_positive_measure),
            ("izer", "ize", self._has_positive_measure),
            abli_rule if self.mode == self.ORIGINAL_ALGORITHM else bli_rule,
            ("alli", "al", self._has_positive_measure),
            ("entli", "ent", self._has_positive_measure),
            ("eli", "e", self._has_positive_measure),
            ("ousli", "ous", self._has_positive_measure),
            ("ization", "ize", self._has_positive_measure),
            ("ation", "ate", self._has_positive_measure),
            ("ator", "ate", self._has_positive_measure),
            ("alism", "al", self._has_positive_measure),
            ("iveness", "ive", self._has_positive_measure),
            ("fulness", "ful", self._has_positive_measure),
            ("ousness", "ous", self._has_positive_measure),
            ("aliti", "al", self._has_positive_measure),
            ("iviti", "ive", self._has_positive_measure),
            ("biliti", "ble", self._has_positive_measure),
        ]

        if self.mode == self.NLTK_EXTENSIONS:
            rules.append(("fulli", "ful", self._has_positive_measure))

            # The 'l' of the 'logi' -> 'log' rule is put with the stem,
            # so that short stems like 'geo' 'theo' etc work like
            # 'archaeo' 'philo' etc.
            rules.append(
                ("logi", "log", lambda stem: self._has_positive_measure(word[:-3]))
            )

        if self.mode == self.MARTIN_EXTENSIONS:
            rules.append(("logi", "log", self._has_positive_measure))

        return self._apply_rule_list(word, rules)

    def _step3(self, word):
        """Implements Step 3 from "An algorithm for suffix stripping"



        From the paper:



        Step 3



            (m>0) ICATE ->  IC              triplicate     ->  triplic

            (m>0) ATIVE ->                  formative      ->  form

            (m>0) ALIZE ->  AL              formalize      ->  formal

            (m>0) ICITI ->  IC              electriciti    ->  electric

            (m>0) ICAL  ->  IC              electrical     ->  electric

            (m>0) FUL   ->                  hopeful        ->  hope

            (m>0) NESS  ->                  goodness       ->  good

        """
        return self._apply_rule_list(
            word,
            [
                ("icate", "ic", self._has_positive_measure),
                ("ative", "", self._has_positive_measure),
                ("alize", "al", self._has_positive_measure),
                ("iciti", "ic", self._has_positive_measure),
                ("ical", "ic", self._has_positive_measure),
                ("ful", "", self._has_positive_measure),
                ("ness", "", self._has_positive_measure),
            ],
        )

    def _step4(self, word):
        """Implements Step 4 from "An algorithm for suffix stripping"



        Step 4



            (m>1) AL    ->                  revival        ->  reviv

            (m>1) ANCE  ->                  allowance      ->  allow

            (m>1) ENCE  ->                  inference      ->  infer

            (m>1) ER    ->                  airliner       ->  airlin

            (m>1) IC    ->                  gyroscopic     ->  gyroscop

            (m>1) ABLE  ->                  adjustable     ->  adjust

            (m>1) IBLE  ->                  defensible     ->  defens

            (m>1) ANT   ->                  irritant       ->  irrit

            (m>1) EMENT ->                  replacement    ->  replac

            (m>1) MENT  ->                  adjustment     ->  adjust

            (m>1) ENT   ->                  dependent      ->  depend

            (m>1 and (*S or *T)) ION ->     adoption       ->  adopt

            (m>1) OU    ->                  homologou      ->  homolog

            (m>1) ISM   ->                  communism      ->  commun

            (m>1) ATE   ->                  activate       ->  activ

            (m>1) ITI   ->                  angulariti     ->  angular

            (m>1) OUS   ->                  homologous     ->  homolog

            (m>1) IVE   ->                  effective      ->  effect

            (m>1) IZE   ->                  bowdlerize     ->  bowdler



        The suffixes are now removed. All that remains is a little

        tidying up.

        """
        measure_gt_1 = lambda stem: self._measure(stem) > 1

        return self._apply_rule_list(
            word,
            [
                ("al", "", measure_gt_1),
                ("ance", "", measure_gt_1),
                ("ence", "", measure_gt_1),
                ("er", "", measure_gt_1),
                ("ic", "", measure_gt_1),
                ("able", "", measure_gt_1),
                ("ible", "", measure_gt_1),
                ("ant", "", measure_gt_1),
                ("ement", "", measure_gt_1),
                ("ment", "", measure_gt_1),
                ("ent", "", measure_gt_1),
                # (m>1 and (*S or *T)) ION ->
                (
                    "ion",
                    "",
                    lambda stem: self._measure(stem) > 1 and stem[-1] in ("s", "t"),
                ),
                ("ou", "", measure_gt_1),
                ("ism", "", measure_gt_1),
                ("ate", "", measure_gt_1),
                ("iti", "", measure_gt_1),
                ("ous", "", measure_gt_1),
                ("ive", "", measure_gt_1),
                ("ize", "", measure_gt_1),
            ],
        )

    def _step5a(self, word):
        """Implements Step 5a from "An algorithm for suffix stripping"



        From the paper:



        Step 5a



            (m>1) E     ->                  probate        ->  probat

                                            rate           ->  rate

            (m=1 and not *o) E ->           cease          ->  ceas

        """
        # Note that Martin's test vocabulary and reference
        # implementations are inconsistent in how they handle the case
        # where two rules both refer to a suffix that matches the word
        # to be stemmed, but only the condition of the second one is
        # true.
        # Earlier in step2b we had the rules:
        #     (m>0) EED -> EE
        #     (*v*) ED  ->
        # but the examples in the paper included "feed"->"feed", even
        # though (*v*) is true for "fe" and therefore the second rule
        # alone would map "feed"->"fe".
        # However, in THIS case, we need to handle the consecutive rules
        # differently and try both conditions (obviously; the second
        # rule here would be redundant otherwise). Martin's paper makes
        # no explicit mention of the inconsistency; you have to infer it
        # from the examples.
        # For this reason, we can't use _apply_rule_list here.
        if word.endswith("e"):
            stem = self._replace_suffix(word, "e", "")
            if self._measure(stem) > 1:
                return stem
            if self._measure(stem) == 1 and not self._ends_cvc(stem):
                return stem
        return word

    def _step5b(self, word):
        """Implements Step 5a from "An algorithm for suffix stripping"



        From the paper:



        Step 5b



            (m > 1 and *d and *L) -> single letter

                                    controll       ->  control

                                    roll           ->  roll

        """
        return self._apply_rule_list(
            word, [("ll", "l", lambda stem: self._measure(word[:-1]) > 1)]
        )

    def stem(self, word, to_lowercase=True):
        """

        :param to_lowercase: if `to_lowercase=True` the word always lowercase

        """
        stem = word.lower() if to_lowercase else word

        if self.mode == self.NLTK_EXTENSIONS and word in self.pool:
            return self.pool[stem]

        if self.mode != self.ORIGINAL_ALGORITHM and len(word) <= 2:
            # With this line, strings of length 1 or 2 don't go through
            # the stemming process, although no mention is made of this
            # in the published algorithm.
            return stem

        stem = self._step1a(stem)
        stem = self._step1b(stem)
        stem = self._step1c(stem)
        stem = self._step2(stem)
        stem = self._step3(stem)
        stem = self._step4(stem)
        stem = self._step5a(stem)
        stem = self._step5b(stem)

        return stem

    def __repr__(self):
        return "<PorterStemmer>"


def demo():
    """

    A demonstration of the porter stemmer on a sample from

    the Penn Treebank corpus.

    """

    from nltk import stem
    from nltk.corpus import treebank

    stemmer = stem.PorterStemmer()

    orig = []
    stemmed = []
    for item in treebank.fileids()[:3]:
        for (word, tag) in treebank.tagged_words(item):
            orig.append(word)
            stemmed.append(stemmer.stem(word))

    # Convert the results to a string, and word-wrap them.
    results = " ".join(stemmed)
    results = re.sub(r"(.{,70})\s", r"\1\n", results + " ").rstrip()

    # Convert the original to a string, and word wrap it.
    original = " ".join(orig)
    original = re.sub(r"(.{,70})\s", r"\1\n", original + " ").rstrip()

    # Print the results.
    print("-Original-".center(70).replace(" ", "*").replace("-", " "))
    print(original)
    print("-Results-".center(70).replace(" ", "*").replace("-", " "))
    print(results)
    print("*" * 70)