File size: 10,713 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Natural Language Toolkit: Naive Bayes Classifiers
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

A classifier based on the Naive Bayes algorithm.  In order to find the

probability for a label, this algorithm first uses the Bayes rule to

express P(label|features) in terms of P(label) and P(features|label):



|                       P(label) * P(features|label)

|  P(label|features) = ------------------------------

|                              P(features)



The algorithm then makes the 'naive' assumption that all features are

independent, given the label:



|                       P(label) * P(f1|label) * ... * P(fn|label)

|  P(label|features) = --------------------------------------------

|                                         P(features)



Rather than computing P(features) explicitly, the algorithm just

calculates the numerator for each label, and normalizes them so they

sum to one:



|                       P(label) * P(f1|label) * ... * P(fn|label)

|  P(label|features) = --------------------------------------------

|                        SUM[l]( P(l) * P(f1|l) * ... * P(fn|l) )

"""

from collections import defaultdict

from nltk.classify.api import ClassifierI
from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist, sum_logs

##//////////////////////////////////////////////////////
##  Naive Bayes Classifier
##//////////////////////////////////////////////////////


class NaiveBayesClassifier(ClassifierI):
    """

    A Naive Bayes classifier.  Naive Bayes classifiers are

    paramaterized by two probability distributions:



      - P(label) gives the probability that an input will receive each

        label, given no information about the input's features.



      - P(fname=fval|label) gives the probability that a given feature

        (fname) will receive a given value (fval), given that the

        label (label).



    If the classifier encounters an input with a feature that has

    never been seen with any label, then rather than assigning a

    probability of 0 to all labels, it will ignore that feature.



    The feature value 'None' is reserved for unseen feature values;

    you generally should not use 'None' as a feature value for one of

    your own features.

    """

    def __init__(self, label_probdist, feature_probdist):
        """

        :param label_probdist: P(label), the probability distribution

            over labels.  It is expressed as a ``ProbDistI`` whose

            samples are labels.  I.e., P(label) =

            ``label_probdist.prob(label)``.



        :param feature_probdist: P(fname=fval|label), the probability

            distribution for feature values, given labels.  It is

            expressed as a dictionary whose keys are ``(label, fname)``

            pairs and whose values are ``ProbDistI`` objects over feature

            values.  I.e., P(fname=fval|label) =

            ``feature_probdist[label,fname].prob(fval)``.  If a given

            ``(label,fname)`` is not a key in ``feature_probdist``, then

            it is assumed that the corresponding P(fname=fval|label)

            is 0 for all values of ``fval``.

        """
        self._label_probdist = label_probdist
        self._feature_probdist = feature_probdist
        self._labels = list(label_probdist.samples())

    def labels(self):
        return self._labels

    def classify(self, featureset):
        return self.prob_classify(featureset).max()

    def prob_classify(self, featureset):
        # Discard any feature names that we've never seen before.
        # Otherwise, we'll just assign a probability of 0 to
        # everything.
        featureset = featureset.copy()
        for fname in list(featureset.keys()):
            for label in self._labels:
                if (label, fname) in self._feature_probdist:
                    break
            else:
                # print('Ignoring unseen feature %s' % fname)
                del featureset[fname]

        # Find the log probability of each label, given the features.
        # Start with the log probability of the label itself.
        logprob = {}
        for label in self._labels:
            logprob[label] = self._label_probdist.logprob(label)

        # Then add in the log probability of features given labels.
        for label in self._labels:
            for (fname, fval) in featureset.items():
                if (label, fname) in self._feature_probdist:
                    feature_probs = self._feature_probdist[label, fname]
                    logprob[label] += feature_probs.logprob(fval)
                else:
                    # nb: This case will never come up if the
                    # classifier was created by
                    # NaiveBayesClassifier.train().
                    logprob[label] += sum_logs([])  # = -INF.

        return DictionaryProbDist(logprob, normalize=True, log=True)

    def show_most_informative_features(self, n=10):
        # Determine the most relevant features, and display them.
        cpdist = self._feature_probdist
        print("Most Informative Features")

        for (fname, fval) in self.most_informative_features(n):

            def labelprob(l):
                return cpdist[l, fname].prob(fval)

            labels = sorted(
                (l for l in self._labels if fval in cpdist[l, fname].samples()),
                key=lambda element: (-labelprob(element), element),
                reverse=True,
            )
            if len(labels) == 1:
                continue
            l0 = labels[0]
            l1 = labels[-1]
            if cpdist[l0, fname].prob(fval) == 0:
                ratio = "INF"
            else:
                ratio = "%8.1f" % (
                    cpdist[l1, fname].prob(fval) / cpdist[l0, fname].prob(fval)
                )
            print(
                "%24s = %-14r %6s : %-6s = %s : 1.0"
                % (fname, fval, ("%s" % l1)[:6], ("%s" % l0)[:6], ratio)
            )

    def most_informative_features(self, n=100):
        """

        Return a list of the 'most informative' features used by this

        classifier.  For the purpose of this function, the

        informativeness of a feature ``(fname,fval)`` is equal to the

        highest value of P(fname=fval|label), for any label, divided by

        the lowest value of P(fname=fval|label), for any label:



        |  max[ P(fname=fval|label1) / P(fname=fval|label2) ]

        """
        if hasattr(self, "_most_informative_features"):
            return self._most_informative_features[:n]
        else:
            # The set of (fname, fval) pairs used by this classifier.
            features = set()
            # The max & min probability associated w/ each (fname, fval)
            # pair.  Maps (fname,fval) -> float.
            maxprob = defaultdict(lambda: 0.0)
            minprob = defaultdict(lambda: 1.0)

            for (label, fname), probdist in self._feature_probdist.items():
                for fval in probdist.samples():
                    feature = (fname, fval)
                    features.add(feature)
                    p = probdist.prob(fval)
                    maxprob[feature] = max(p, maxprob[feature])
                    minprob[feature] = min(p, minprob[feature])
                    if minprob[feature] == 0:
                        features.discard(feature)

            # Convert features to a list, & sort it by how informative
            # features are.
            self._most_informative_features = sorted(
                features,
                key=lambda feature_: (
                    minprob[feature_] / maxprob[feature_],
                    feature_[0],
                    feature_[1] in [None, False, True],
                    str(feature_[1]).lower(),
                ),
            )
        return self._most_informative_features[:n]

    @classmethod
    def train(cls, labeled_featuresets, estimator=ELEProbDist):
        """

        :param labeled_featuresets: A list of classified featuresets,

            i.e., a list of tuples ``(featureset, label)``.

        """
        label_freqdist = FreqDist()
        feature_freqdist = defaultdict(FreqDist)
        feature_values = defaultdict(set)
        fnames = set()

        # Count up how many times each feature value occurred, given
        # the label and featurename.
        for featureset, label in labeled_featuresets:
            label_freqdist[label] += 1
            for fname, fval in featureset.items():
                # Increment freq(fval|label, fname)
                feature_freqdist[label, fname][fval] += 1
                # Record that fname can take the value fval.
                feature_values[fname].add(fval)
                # Keep a list of all feature names.
                fnames.add(fname)

        # If a feature didn't have a value given for an instance, then
        # we assume that it gets the implicit value 'None.'  This loop
        # counts up the number of 'missing' feature values for each
        # (label,fname) pair, and increments the count of the fval
        # 'None' by that amount.
        for label in label_freqdist:
            num_samples = label_freqdist[label]
            for fname in fnames:
                count = feature_freqdist[label, fname].N()
                # Only add a None key when necessary, i.e. if there are
                # any samples with feature 'fname' missing.
                if num_samples - count > 0:
                    feature_freqdist[label, fname][None] += num_samples - count
                    feature_values[fname].add(None)

        # Create the P(label) distribution
        label_probdist = estimator(label_freqdist)

        # Create the P(fval|label, fname) distribution
        feature_probdist = {}
        for ((label, fname), freqdist) in feature_freqdist.items():
            probdist = estimator(freqdist, bins=len(feature_values[fname]))
            feature_probdist[label, fname] = probdist

        return cls(label_probdist, feature_probdist)


##//////////////////////////////////////////////////////
##  Demo
##//////////////////////////////////////////////////////


def demo():
    from nltk.classify.util import names_demo

    classifier = names_demo(NaiveBayesClassifier.train)
    classifier.show_most_informative_features()


if __name__ == "__main__":
    demo()