Spaces:
Sleeping
Sleeping
File size: 10,713 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Natural Language Toolkit: Naive Bayes Classifiers
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
A classifier based on the Naive Bayes algorithm. In order to find the
probability for a label, this algorithm first uses the Bayes rule to
express P(label|features) in terms of P(label) and P(features|label):
| P(label) * P(features|label)
| P(label|features) = ------------------------------
| P(features)
The algorithm then makes the 'naive' assumption that all features are
independent, given the label:
| P(label) * P(f1|label) * ... * P(fn|label)
| P(label|features) = --------------------------------------------
| P(features)
Rather than computing P(features) explicitly, the algorithm just
calculates the numerator for each label, and normalizes them so they
sum to one:
| P(label) * P(f1|label) * ... * P(fn|label)
| P(label|features) = --------------------------------------------
| SUM[l]( P(l) * P(f1|l) * ... * P(fn|l) )
"""
from collections import defaultdict
from nltk.classify.api import ClassifierI
from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist, sum_logs
##//////////////////////////////////////////////////////
## Naive Bayes Classifier
##//////////////////////////////////////////////////////
class NaiveBayesClassifier(ClassifierI):
"""
A Naive Bayes classifier. Naive Bayes classifiers are
paramaterized by two probability distributions:
- P(label) gives the probability that an input will receive each
label, given no information about the input's features.
- P(fname=fval|label) gives the probability that a given feature
(fname) will receive a given value (fval), given that the
label (label).
If the classifier encounters an input with a feature that has
never been seen with any label, then rather than assigning a
probability of 0 to all labels, it will ignore that feature.
The feature value 'None' is reserved for unseen feature values;
you generally should not use 'None' as a feature value for one of
your own features.
"""
def __init__(self, label_probdist, feature_probdist):
"""
:param label_probdist: P(label), the probability distribution
over labels. It is expressed as a ``ProbDistI`` whose
samples are labels. I.e., P(label) =
``label_probdist.prob(label)``.
:param feature_probdist: P(fname=fval|label), the probability
distribution for feature values, given labels. It is
expressed as a dictionary whose keys are ``(label, fname)``
pairs and whose values are ``ProbDistI`` objects over feature
values. I.e., P(fname=fval|label) =
``feature_probdist[label,fname].prob(fval)``. If a given
``(label,fname)`` is not a key in ``feature_probdist``, then
it is assumed that the corresponding P(fname=fval|label)
is 0 for all values of ``fval``.
"""
self._label_probdist = label_probdist
self._feature_probdist = feature_probdist
self._labels = list(label_probdist.samples())
def labels(self):
return self._labels
def classify(self, featureset):
return self.prob_classify(featureset).max()
def prob_classify(self, featureset):
# Discard any feature names that we've never seen before.
# Otherwise, we'll just assign a probability of 0 to
# everything.
featureset = featureset.copy()
for fname in list(featureset.keys()):
for label in self._labels:
if (label, fname) in self._feature_probdist:
break
else:
# print('Ignoring unseen feature %s' % fname)
del featureset[fname]
# Find the log probability of each label, given the features.
# Start with the log probability of the label itself.
logprob = {}
for label in self._labels:
logprob[label] = self._label_probdist.logprob(label)
# Then add in the log probability of features given labels.
for label in self._labels:
for (fname, fval) in featureset.items():
if (label, fname) in self._feature_probdist:
feature_probs = self._feature_probdist[label, fname]
logprob[label] += feature_probs.logprob(fval)
else:
# nb: This case will never come up if the
# classifier was created by
# NaiveBayesClassifier.train().
logprob[label] += sum_logs([]) # = -INF.
return DictionaryProbDist(logprob, normalize=True, log=True)
def show_most_informative_features(self, n=10):
# Determine the most relevant features, and display them.
cpdist = self._feature_probdist
print("Most Informative Features")
for (fname, fval) in self.most_informative_features(n):
def labelprob(l):
return cpdist[l, fname].prob(fval)
labels = sorted(
(l for l in self._labels if fval in cpdist[l, fname].samples()),
key=lambda element: (-labelprob(element), element),
reverse=True,
)
if len(labels) == 1:
continue
l0 = labels[0]
l1 = labels[-1]
if cpdist[l0, fname].prob(fval) == 0:
ratio = "INF"
else:
ratio = "%8.1f" % (
cpdist[l1, fname].prob(fval) / cpdist[l0, fname].prob(fval)
)
print(
"%24s = %-14r %6s : %-6s = %s : 1.0"
% (fname, fval, ("%s" % l1)[:6], ("%s" % l0)[:6], ratio)
)
def most_informative_features(self, n=100):
"""
Return a list of the 'most informative' features used by this
classifier. For the purpose of this function, the
informativeness of a feature ``(fname,fval)`` is equal to the
highest value of P(fname=fval|label), for any label, divided by
the lowest value of P(fname=fval|label), for any label:
| max[ P(fname=fval|label1) / P(fname=fval|label2) ]
"""
if hasattr(self, "_most_informative_features"):
return self._most_informative_features[:n]
else:
# The set of (fname, fval) pairs used by this classifier.
features = set()
# The max & min probability associated w/ each (fname, fval)
# pair. Maps (fname,fval) -> float.
maxprob = defaultdict(lambda: 0.0)
minprob = defaultdict(lambda: 1.0)
for (label, fname), probdist in self._feature_probdist.items():
for fval in probdist.samples():
feature = (fname, fval)
features.add(feature)
p = probdist.prob(fval)
maxprob[feature] = max(p, maxprob[feature])
minprob[feature] = min(p, minprob[feature])
if minprob[feature] == 0:
features.discard(feature)
# Convert features to a list, & sort it by how informative
# features are.
self._most_informative_features = sorted(
features,
key=lambda feature_: (
minprob[feature_] / maxprob[feature_],
feature_[0],
feature_[1] in [None, False, True],
str(feature_[1]).lower(),
),
)
return self._most_informative_features[:n]
@classmethod
def train(cls, labeled_featuresets, estimator=ELEProbDist):
"""
:param labeled_featuresets: A list of classified featuresets,
i.e., a list of tuples ``(featureset, label)``.
"""
label_freqdist = FreqDist()
feature_freqdist = defaultdict(FreqDist)
feature_values = defaultdict(set)
fnames = set()
# Count up how many times each feature value occurred, given
# the label and featurename.
for featureset, label in labeled_featuresets:
label_freqdist[label] += 1
for fname, fval in featureset.items():
# Increment freq(fval|label, fname)
feature_freqdist[label, fname][fval] += 1
# Record that fname can take the value fval.
feature_values[fname].add(fval)
# Keep a list of all feature names.
fnames.add(fname)
# If a feature didn't have a value given for an instance, then
# we assume that it gets the implicit value 'None.' This loop
# counts up the number of 'missing' feature values for each
# (label,fname) pair, and increments the count of the fval
# 'None' by that amount.
for label in label_freqdist:
num_samples = label_freqdist[label]
for fname in fnames:
count = feature_freqdist[label, fname].N()
# Only add a None key when necessary, i.e. if there are
# any samples with feature 'fname' missing.
if num_samples - count > 0:
feature_freqdist[label, fname][None] += num_samples - count
feature_values[fname].add(None)
# Create the P(label) distribution
label_probdist = estimator(label_freqdist)
# Create the P(fval|label, fname) distribution
feature_probdist = {}
for ((label, fname), freqdist) in feature_freqdist.items():
probdist = estimator(freqdist, bins=len(feature_values[fname]))
feature_probdist[label, fname] = probdist
return cls(label_probdist, feature_probdist)
##//////////////////////////////////////////////////////
## Demo
##//////////////////////////////////////////////////////
def demo():
from nltk.classify.util import names_demo
classifier = names_demo(NaiveBayesClassifier.train)
classifier.show_most_informative_features()
if __name__ == "__main__":
demo()
|