Spaces:
Sleeping
Sleeping
File size: 1,411 Bytes
0b4516f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
# Copyright (c) OpenMMLab. All rights reserved.
import unittest
from mmocr.datasets import WildReceiptDataset
class TestWildReceiptDataset(unittest.TestCase):
def setUp(self):
metainfo = 'tests/data/kie_toy_dataset/wildreceipt/class_list.txt'
self.dataset = WildReceiptDataset(
data_prefix=dict(img_path='data/'),
ann_file='tests/data/kie_toy_dataset/wildreceipt/data.txt',
metainfo=metainfo,
pipeline=[],
serialize_data=False,
lazy_init=False)
def test_init(self):
self.assertEqual(self.dataset.metainfo['category'][0], {
'id': '0',
'name': 'Ignore'
})
self.assertEqual(self.dataset.metainfo['task_name'], 'KIE')
self.assertEqual(self.dataset.metainfo['dataset_type'],
'WildReceiptDataset')
def test_getitem(self):
data = self.dataset.__getitem__(0)
instance = data['instances'][0]
self.assertIsInstance(instance['bbox_label'], int)
self.assertIsInstance(instance['edge_label'], int)
self.assertIsInstance(instance['text'], str)
self.assertEqual(instance['bbox'].shape, (4, ))
self.assertEqual(data['img_shape'], (1200, 1600))
self.assertEqual(
data['img_path'],
'data/tests/data/kie_toy_dataset/wildreceipt/1.jpeg' # noqa
)
|