# -*- coding: utf-8 -*- """Copy of app.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1KoR_JrJMqzUq-XagPaxVUp874bVW_qNI """ #/default_exp app # #from fastai.vision.all import * #!pip install gradio import gradio as gr #/export def is_monet(x): return x[0].issupper #/export from fastai.vision.all import * #/export learn = load_learner('model.pkl') #/export categories = ('Manet', 'Monet') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # export image = gr.Image() # Image input without shape argument label = gr.Label() # Label output # Define some example images (make sure these paths are correct) examples = ['monet.jpg', 'manet2.jpg', 'manet1.jpeg'] # Create the Gradio interface #intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) # Create the Gradio interface with a title and description intf = gr.Interface( fn=classify_image, inputs=image, outputs=label, examples=examples, title="Monet vs Manet Image Classifier", # Add title here description="Upload an image to classify it as either a Monet or Manet painting." # Optional description ) # Launch the interface with Inline=False to open in a separate window intf.launch(share=True) #!pip install nbdev import os os.listdir('/content') import os notebook_path = '/content/app.ipynb' print(os.path.abspath(notebook_path)) import os file_exists = os.path.isfile('/content/app.ipynb') print(file_exists) # This should return True if the file exists import os # Extract the path of the current notebook in Colab notebook_path = '/content/app.ipynb' # Replace with the actual path if different print(f"Notebook is located at: {notebook_path}") nbdev.export.nb_export('Copy of app.ipynb', 'app') print('Export successful')