File size: 10,189 Bytes
668bc28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import streamlit as st
import pandas as pd
import re
import requests
import urllib.request
from PIL import Image
from transformers import pipeline
import tempfile
import cv2
import io
import yt_dlp
import os
# Add a styled disclaimer at the top
st.markdown(
"""
<div style="background-color: #f8d7da; color: #721c24; padding: 10px; border-radius: 5px; border: 1px solid #f5c6cb;">
**Disclaimer:** You are recommended to give any images and videos from your local device. In case of URLs, give the url of the website's image from chrome by copying image address. And give the URL of twitter videos for video captioning by URL.
</div>
""",
unsafe_allow_html=True
)
# Load the Salesforce BLIP model for image captioning
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
# Load the summarization model for summarizing captions
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to extract URLs from a text
def extract_urls(text):
url_pattern = re.compile(r'https?://\S+')
return url_pattern.findall(text)
# Function to fetch image from URL
def fetch_image_from_url(url):
try:
response = urllib.request.urlopen(url)
image_data = response.read()
image = Image.open(io.BytesIO(image_data))
return image
except Exception as e:
return None
# Function to convert video to 30 FPS
def convert_video_to_30fps(video_path):
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Output format
fps = 30 # Desired FPS
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Temporary file to save the 30 FPS video
converted_video_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
out = cv2.VideoWriter(converted_video_path, fourcc, fps, (width, height))
while True:
ret, frame = cap.read()
if not ret:
break
out.write(frame) # Write the frame into the new video
cap.release()
out.release()
return converted_video_path
# Function to extract frames from a 30 FPS video at 1-second intervals
def extract_frames(video_stream):
frames = []
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
temp_video_file.write(video_stream.read())
temp_video_file_path = temp_video_file.name
# Convert video to 30 FPS
converted_video_path = convert_video_to_30fps(temp_video_file_path)
cap = cv2.VideoCapture(converted_video_path)
fps = cap.get(cv2.CAP_PROP_FPS) # This should now be 30 FPS
frame_interval = int(fps) # Frame interval for 1 second
while True:
success, frame = cap.read()
if not success:
break
current_frame_number = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
if current_frame_number % frame_interval == 0: # Extract one frame per second
frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
cap.release()
return frames
# Function to generate captions for a list of frames
def generate_captions(frames):
captions = []
for frame in frames:
caption = captioning_model(frame)
if caption and 'generated_text' in caption[0]:
captions.append(caption[0]['generated_text'])
return captions
# Function to generate caption for a single image
def generate_caption_for_image(image):
caption = captioning_model(image)
if caption and 'generated_text' in caption[0]:
return caption[0]['generated_text']
return "No caption generated."
# Function to summarize the captions
def summarize_captions(captions):
combined_captions = " ".join(captions)
summary = summarizer(combined_captions, max_length=150, min_length=30, do_sample=False)
return summary[0]['summary_text']
# Function to download Twitter video using yt-dlp
def download_twitter_video(url):
url = url.replace("x.com", "twitter.com") # Convert the URL if needed
ydl_opts = {
'format': 'best',
'outtmpl': 'downloaded_video.%(ext)s',
'quiet': True,
'noplaylist': True,
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=False)
video_url = info_dict.get("url", None)
response = requests.get(video_url)
if response.status_code == 200:
return io.BytesIO(response.content)
else:
return None
except Exception as e:
st.error(f"An error occurred: {e}")
return None
# Function to process URLs in a DataFrame
def process_urls_in_dataframe(df):
results = []
for index, row in df.iterrows():
for cell in row:
if pd.notna(cell):
urls = extract_urls(str(cell))
for url in urls:
if url.startswith("https://x.com"):
st.write(f"Processing video URL: {url}")
video_stream = download_twitter_video(url)
if video_stream:
frames = extract_frames(video_stream)
if frames:
captions = generate_captions(frames)
summary = summarize_captions(captions)
results.append({"URL": url, "Caption": summary})
save_results_to_csv(results)
else:
st.error(f"Failed to extract frames from video: {url}")
else:
st.error(f"Failed to fetch video: {url}")
else:
st.write(f"Processing image URL: {url}")
image = fetch_image_from_url(url)
if image:
caption = generate_caption_for_image(image)
results.append({"URL": url, "Caption": caption})
save_results_to_csv(results)
return results
# Function to save results to a CSV file
def save_results_to_csv(results):
file_path = "captions_results.csv"
df = pd.DataFrame(results)
if not os.path.isfile(file_path):
df.to_csv(file_path, index=False, mode='w', header=True)
else:
df.to_csv(file_path, index=False, mode='a', header=False)
# Streamlit app
st.title("Captioning Application")
# Section to process uploaded CSV or Excel files
st.subheader("Process URLs from File")
uploaded_file = st.file_uploader("Upload a CSV or Excel file", type=["csv", "xlsx"])
if uploaded_file is not None:
st.write("Processing file...")
if uploaded_file.name.endswith("csv"):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
results = process_urls_in_dataframe(df)
if results:
st.write(f"Processed {len(results)} URLs from the file.")
st.write("Results saved to captions_results.csv")
else:
st.write("No URLs found or processed.")
# Section to process URLs for images and videos
st.subheader("Process URLs Directly")
# Upload image URL
image_url = st.text_input("Enter Image URL:")
if image_url:
st.write(f"Processing Image URL: {image_url}")
image = fetch_image_from_url(image_url)
if image:
caption = generate_caption_for_image(image)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write(f"Caption: {caption}")
# Collect results in a list of dictionaries
results = [{"URL": image_url, "Caption": caption}]
# Save the results to the CSV file
save_results_to_csv(results)
st.success("Results saved to captions_results.csv")
# Upload video URL
video_url = st.text_input("Enter Video URL:")
if video_url:
st.write(f"Processing Video URL: {video_url}")
if video_url.startswith("https://x.com"):
video_stream = download_twitter_video(video_url)
if video_stream:
frames = extract_frames(video_stream)
if frames:
captions = generate_captions(frames)
summary = summarize_captions(captions)
st.write(f"Caption: {summary}")
# Collect results in a list of dictionaries
results = [{"URL": video_url, "Caption": summary}]
# Save the results to the CSV file
save_results_to_csv(results)
st.success("Results saved to captions_results.csv")
else:
st.error("Failed to extract frames from video.")
else:
st.error("Failed to fetch video.")
else:
st.error("Only Twitter video URLs are supported.")
# Section to process local files
st.subheader("Process Local Files")
uploaded_local_file = st.file_uploader("Upload a local image or video file", type=["jpg", "jpeg", "png", "mp4"])
if uploaded_local_file is not None:
if uploaded_local_file.type.startswith("image"):
image = Image.open(uploaded_local_file)
caption = generate_caption_for_image(image)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write(f"Caption: {caption}")
elif uploaded_local_file.type.startswith("video"):
video_stream = io.BytesIO(uploaded_local_file.read())
frames = extract_frames(video_stream)
if frames:
captions = generate_captions(frames)
summary = summarize_captions(captions)
st.video(uploaded_local_file)
st.write(f"Summary of Captions: {summary}")
else:
st.error("Failed to extract frames from video.")
st.write("Upload a file or enter a URL to start processing.")
|