from typing import List import streamlit as st from langchain.docstore.document import Document from knowledge_gpt.core.parsing import File import openai from streamlit.logger import get_logger from typing import NoReturn logger = get_logger(__name__) def wrap_doc_in_html(docs: List[Document]) -> str: """Wraps each page in document separated by newlines in
tags""" text = [doc.page_content for doc in docs] if isinstance(text, list): # Add horizontal rules between pages text = "\n
{line}
" for line in text.split("\n")]) def is_query_valid(query: str) -> bool: if not query: st.error("Please enter a question!") return False return True def is_file_valid(file: File) -> bool: if ( len(file.docs) == 0 or "".join([doc.page_content for doc in file.docs]).strip() == "" ): st.error("Cannot read document! Make sure the document has selectable text") logger.error("Cannot read document") return False return True def display_file_read_error(e: Exception, file_name: str) -> NoReturn: st.error("Error reading file. Make sure the file is not corrupted or encrypted") logger.error(f"{e.__class__.__name__}: {e}. Extension: {file_name.split('.')[-1]}") st.stop() @st.cache_data(show_spinner=False) def is_open_ai_key_valid(openai_api_key, model: str) -> bool: if model == "debug": return True if not openai_api_key: st.error("Please enter your OpenAI API key in the sidebar!") return False try: openai.ChatCompletion.create( model=model, messages=[{"role": "user", "content": "test"}], api_key=openai_api_key, ) except Exception as e: st.error(f"{e.__class__.__name__}: {e}") logger.error(f"{e.__class__.__name__}: {e}") return False return True