from typing import List from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.docstore.document import Document from langchain.chat_models import ChatOpenAI from knowledge_gpt.core.debug import FakeChatModel from langchain.chat_models.base import BaseChatModel def pop_docs_upto_limit( query: str, chain: StuffDocumentsChain, docs: List[Document], max_len: int ) -> List[Document]: """Pops documents from a list until the final prompt length is less than the max length.""" token_count: int = chain.prompt_length(docs, question=query) # type: ignore while token_count > max_len and len(docs) > 0: docs.pop() token_count = chain.prompt_length(docs, question=query) # type: ignore return docs def get_llm(model: str, **kwargs) -> BaseChatModel: if model == "debug": return FakeChatModel() if "gpt" in model: return ChatOpenAI(model=model, **kwargs) # type: ignore raise NotImplementedError(f"Model {model} not supported!")