File size: 3,460 Bytes
9177215 7d1720e 9177215 7d1720e 9177215 7d1720e 9177215 7d1720e 9177215 f1387c9 9177215 8598421 9177215 8598421 9177215 8598421 f1387c9 8598421 9177215 8598421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import streamlit as st
from components.sidebar import sidebar
from ui import (
wrap_doc_in_html,
is_query_valid,
is_file_valid,
is_open_ai_key_valid,
display_file_read_error,
)
from core.caching import bootstrap_caching
from core.parsing import read_file
from core.chunking import chunk_file
from core.embedding import embed_files
from core.qa import query_folder
from core.utils import get_llm
EMBEDDING = "openai"
VECTOR_STORE = "faiss"
MODEL_LIST = ["gpt-3.5-turbo", "gpt-4"]
# Uncomment to enable debug mode
# MODEL_LIST.insert(0, "debug")
st.set_page_config(page_title="☘️InspectSolv", page_icon="☘️", layout="wide")
st.header("☘️InspectSolv")
# Enable caching for expensive functions
bootstrap_caching()
sidebar()
openai_api_key = st.session_state.get("OPENAI_API_KEY")
if not openai_api_key:
st.warning(
"Enter your OpenAI API key in the sidebar. You can get a key at"
" https://platform.openai.com/account/api-keys."
)
uploaded_file = st.file_uploader(
"Upload a pdf, docx, or txt file",
type=["pdf", "docx", "txt"],
help="Scanned documents are not supported yet!",
)
# model: str = st.selectbox("Model", options=MODEL_LIST) # type: ignore
model = MODEL_LIST[0]
from importlib import metadata
with st.expander("Advanced Options"):
return_all_chunks = st.checkbox("Show all chunks retrieved from vector search")
show_full_doc = st.checkbox("Show parsed contents of the document")
st.markdown('# config')
import sys
st.markdown(f'Python version: {sys.version}')
for dist in metadata.distributions():
st.markdown((f"{dist.name}=={dist.version}"))
if not uploaded_file:
st.stop()
try:
file = read_file(uploaded_file)
except Exception as e:
display_file_read_error(e, file_name=uploaded_file.name)
chunked_file = chunk_file(file, chunk_size=300, chunk_overlap=0)
if not is_file_valid(file):
st.stop()
if not is_open_ai_key_valid(openai_api_key, model):
st.stop()
with st.spinner("Indexing document... This may take a while⏳"):
folder_index = embed_files(
files=[chunked_file],
embedding=EMBEDDING if model != "debug" else "debug",
vector_store=VECTOR_STORE if model != "debug" else "debug",
openai_api_key=openai_api_key,
)
with st.form(key="qa_form"):
options = ['List all pre existing conditions which may affect home insurance', 'Show the problematic components!', 'Show repair needs!']
query = st.selectbox('Select an option', options)
submit = st.form_submit_button("Submit")
if show_full_doc:
with st.expander("Document"):
# Hack to get around st.markdown rendering LaTeX
st.markdown(f"<p>{wrap_doc_in_html(file.docs)}</p>", unsafe_allow_html=True)
if submit:
if not is_query_valid(query):
st.stop()
# Output Columns
answer_col, sources_col = st.columns(2)
llm = get_llm(model=model, openai_api_key=openai_api_key, temperature=0)
result = query_folder(
folder_index=folder_index,
query=query,
return_all=return_all_chunks,
llm=llm,
)
with answer_col:
st.markdown("#### Answer")
st.markdown(result.answer)
with sources_col:
st.markdown("#### Sources")
for source in result.sources:
st.markdown(source.page_content)
st.markdown(source.metadata["source"])
st.markdown("---")
|