luxe-demo / app.py
singletongue's picture
Implement replacing of model/tokenizer entities
d6ab44d verified
raw
history blame
20.8 kB
import csv
import re
import unicodedata
from collections import defaultdict
from pathlib import Path
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import unidic_lite
from bm25s.hf import BM25HF, TokenizerHF
from fugashi import GenericTagger
from transformers import AutoModelForPreTraining, AutoTokenizer
ALIAS_SEP = "|"
ENTITY_SPECIAL_TOKENS = ["[PAD]", "[UNK]", "[MASK]", "[MASK2]"]
repo_id = "studio-ousia/luxe"
revision = "ja-v0.3.1"
nayose_repo_id = "studio-ousia/luxe-nayose-bm25"
ignore_category_patterns = [
r"\d+年",
r"楽曲 [ぁ-ん]",
r"漫画作品 [ぁ-ん]",
r"アニメ作品 [ぁ-ん]",
r"アニメ作品 [ぁ-ん]",
r"の一覧",
r"各国の",
r"各年の",
]
model = AutoModelForPreTraining.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
class MecabTokenizer:
def __init__(self):
unidic_dir = unidic_lite.DICDIR
mecabrc_file = Path(unidic_dir, "mecabrc")
mecab_option = f"-d {unidic_dir} -r {mecabrc_file}"
self.tagger = GenericTagger(mecab_option)
def __call__(self, text: str) -> list[tuple[str, str, tuple[int, int]]]:
outputs = []
end = 0
for node in self.tagger(text):
word = node.surface.strip()
pos = node.feature[0]
start = text.index(word, end)
end = start + len(word)
outputs.append((word, pos, (start, end)))
return outputs
mecab_tokenizer = MecabTokenizer()
def normalize_text(text: str) -> str:
return unicodedata.normalize("NFKC", text)
bm25_tokenizer = TokenizerHF(lower=True, splitter=tokenizer.tokenize, stopwords=None, stemmer=None)
bm25_tokenizer.load_vocab_from_hub("studio-ousia/luxe-nayose-bm25")
bm25_retriever = BM25HF.load_from_hub("studio-ousia/luxe-nayose-bm25")
def get_texts_from_file(file_path: str | None):
texts = []
if file_path is not None:
try:
with open(file_path, newline="") as f:
reader = csv.DictReader(f, fieldnames=["text"])
for row in reader:
text = normalize_text(row["text"]).strip()
if text != "":
texts.append(text)
except Exception as e:
gr.Warning("ファイルを正しく読み込めませんでした。")
print(e)
texts = []
return texts
def get_noun_spans_from_text(text: str) -> list[tuple[int, int]]:
last_pos = None
noun_spans = []
for word, pos, (start, end) in mecab_tokenizer(text):
if pos == "名詞":
if len(noun_spans) > 0 and last_pos == "名詞":
noun_spans[-1] = (noun_spans[-1][0], end)
else:
noun_spans.append((start, end))
last_pos = pos
return noun_spans
def get_token_spans(text: str) -> list[tuple[int, int]]:
token_spans = []
end = 0
for token in tokenizer.tokenize(text):
token = token.removeprefix("##")
start = text.index(token, end)
end = start + len(token)
token_spans.append((start, end))
return [(0, 0)] + token_spans + [(end, end)] # count for "[CLS]" and "[SEP]"
def get_predicted_entity_spans(
ner_logits: torch.Tensor, token_spans: list[tuple[int, int]], entity_span_sensitivity: float = 1.0
) -> list[tuple[int, int]]:
length = ner_logits.size(-1)
assert ner_logits.size() == (length, length) # not batched
ner_probs = torch.sigmoid(ner_logits).triu()
probs_sorted, sort_idxs = ner_probs.flatten().sort(descending=True)
predicted_entity_spans = []
if entity_span_sensitivity > 0.0:
for p, i in zip(probs_sorted, sort_idxs.tolist()):
if p < 10.0 ** (-1.0 * entity_span_sensitivity):
break
start_idx = i // length
end_idx = i % length
start = token_spans[start_idx][0]
end = token_spans[end_idx][1]
for ex_start, ex_end in predicted_entity_spans:
if not (start < end <= ex_start or ex_end <= start < end):
break
else:
predicted_entity_spans.append((start, end))
return sorted(predicted_entity_spans)
def get_topk_entities_from_texts(
texts: list[str],
k: int = 5,
entity_span_sensitivity: float = 1.0,
nayose_coef: float = 1.0,
entities_are_replaced: bool = False,
) -> tuple[list[list[tuple[int, int]]], list[list[str]], list[list[str]], list[list[list[str]]]]:
batch_entity_spans: list[list[tuple[int, int]]] = []
topk_normal_entities: list[list[str]] = []
topk_category_entities: list[list[str]] = []
topk_span_entities: list[list[list[str]]] = []
id2normal_entity = {
entity_id: entity
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id < model.config.num_normal_entities
}
id2category_entity = {
entity_id - model.config.num_normal_entities: entity
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= model.config.num_normal_entities
}
ignore_category_entity_ids = [
entity_id - model.config.num_normal_entities
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= model.config.num_normal_entities
and any(re.search(pattern, entity) for pattern in ignore_category_patterns)
]
for text in texts:
tokenized_examples = tokenizer(text, return_tensors="pt")
model_outputs = model(**tokenized_examples)
token_spans = get_token_spans(text)
entity_spans = get_predicted_entity_spans(model_outputs.ner_logits[0], token_spans, entity_span_sensitivity)
batch_entity_spans.append(entity_spans)
tokenized_examples = tokenizer(text, entity_spans=entity_spans or None, return_tensors="pt")
model_outputs = model(**tokenized_examples)
if model_outputs.topic_entity_logits is not None:
_, topk_normal_entity_ids = model_outputs.topic_entity_logits[0].topk(k)
topk_normal_entities.append([id2normal_entity[id_] for id_ in topk_normal_entity_ids.tolist()])
else:
topk_normal_entities.append([])
if model_outputs.topic_category_logits is not None:
model_outputs.topic_category_logits[:, ignore_category_entity_ids] = float("-inf")
_, topk_category_entity_ids = model_outputs.topic_category_logits[0].topk(k)
topk_category_entities.append([id2category_entity[id_] for id_ in topk_category_entity_ids.tolist()])
else:
topk_category_entities.append([])
if model_outputs.entity_logits is not None:
span_entity_logits = model_outputs.entity_logits[0, :, :500000]
if nayose_coef > 0.0 and not entities_are_replaced:
nayose_queries = ["ja:" + text[start:end] for start, end in entity_spans]
nayose_query_tokens = bm25_tokenizer.tokenize(nayose_queries)
nayose_scores = torch.vstack(
[torch.from_numpy(bm25_retriever.get_scores(tokens)) for tokens in nayose_query_tokens]
)
span_entity_logits += nayose_coef * nayose_scores
_, topk_span_entity_ids = span_entity_logits.topk(k)
topk_span_entities.append(
[[id2normal_entity[id_] for id_ in ids] for ids in topk_span_entity_ids.tolist()]
)
else:
topk_span_entities.append([])
return batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
def get_selected_entity(evt: gr.SelectData):
return evt.value[0]
def get_similar_entities(query_entity: str, k: int = 10) -> list[str]:
query_entity_id = tokenizer.entity_vocab[query_entity]
id2normal_entity = {
entity_id: entity
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id < model.config.num_normal_entities
}
id2category_entity = {
entity_id - model.config.num_normal_entities: entity
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= model.config.num_normal_entities
}
ignore_category_entity_ids = [
entity_id - model.config.num_normal_entities
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= model.config.num_normal_entities
and any(re.search(pattern, entity) for pattern in ignore_category_patterns)
]
entity_embeddings = model.luke.entity_embeddings.entity_embeddings.weight
normal_entity_embeddings = entity_embeddings[: model.config.num_normal_entities]
category_entity_embeddings = entity_embeddings[model.config.num_normal_entities :]
if query_entity_id < model.config.num_normal_entities:
topk_entity_scores = normal_entity_embeddings[query_entity_id] @ normal_entity_embeddings.T
topk_entity_ids = topk_entity_scores.topk(k + 1).indices[1:]
topk_entities = [id2normal_entity[entity_id] for entity_id in topk_entity_ids.tolist()]
else:
query_entity_id -= model.config.num_normal_entities
topk_entity_scores = category_entity_embeddings[query_entity_id] @ category_entity_embeddings.T
topk_entity_scores[ignore_category_entity_ids] = float("-inf")
topk_entity_ids = topk_entity_scores.topk(k + 1).indices[1:]
topk_entities = [id2category_entity[entity_id] for entity_id in topk_entity_ids.tolist()]
return topk_entities
def get_new_entity_text_pairs_from_file(file_path: str | None) -> list[list[str]]:
new_entity_text_pairs = []
if file_path is not None:
try:
with open(file_path, newline="") as f:
reader = csv.DictReader(f, fieldnames=["entity", "text"])
for row in reader:
entity = normalize_text(row["entity"]).strip()
text = normalize_text(row["text"]).strip()
if entity != "" and text != "":
new_entity_text_pairs.append([entity, text])
except Exception as e:
gr.Warning("ファイルを正しく読み込めませんでした。")
print(e)
new_entity_text_pairs = []
return new_entity_text_pairs
def replace_entities(
new_entity_text_pairs: list[tuple[str, str]],
new_num_category_entities: int = 0,
new_entity_counts: list[int] | None = None,
new_padding_idx: int = 0,
) -> True:
gr.Info("トークナイザのエンティティの語彙を置き換えています...", duration=5)
new_entity_tokens = ENTITY_SPECIAL_TOKENS + [entity for entity, _ in new_entity_text_pairs]
new_entity_vocab = {}
for entity in new_entity_tokens:
if entity not in new_entity_vocab:
new_entity_vocab[entity] = len(new_entity_vocab)
new_entity_vocab = {entity: entity_id for entity_id, entity in enumerate(new_entity_tokens)}
tokenizer.entity_vocab = new_entity_vocab
tokenizer.entity_pad_token_id = tokenizer.entity_vocab["[PAD]"]
tokenizer.entity_unk_token_id = tokenizer.entity_vocab["[UNK]"]
tokenizer.entity_mask_token_id = tokenizer.entity_vocab["[MASK]"]
tokenizer.entity_mask2_token_id = tokenizer.entity_vocab["[MASK2]"]
gr.Info("モデルのエンティティの埋め込みを置き換えています...", duration=5)
new_entity_embeddings_dict = defaultdict(list)
for entity_special_token in ENTITY_SPECIAL_TOKENS:
entity_special_token_id = tokenizer.entity_vocab[entity_special_token]
new_entity_embeddings_dict[entity_special_token_id].append(
model.luke.entity_embeddings.entity_embeddings.weight.data[entity_special_token_id]
)
for entity, text in new_entity_text_pairs:
entity_id = tokenizer.entity_vocab[entity]
tokenized_inputs = tokenizer(text, return_tensors="pt")
model_outputs = model(**tokenized_inputs)
entity_embeddings = model.entity_predictions.transform(model_outputs.last_hidden_state[:, 0])
new_entity_embeddings_dict[entity_id].append(entity_embeddings[0])
assert len(new_entity_embeddings_dict) == len(tokenizer.entity_vocab)
new_entity_embeddings = torch.vstack(
[
sum(new_entity_embeddings_dict[i]) / len(new_entity_embeddings_dict[i])
for i in range(len(new_entity_embeddings_dict))
]
)
new_entity_vocab_size, new_entity_emb_size = new_entity_embeddings.size()
assert new_entity_vocab_size == len(tokenizer.entity_vocab)
new_num_normal_entities = new_entity_vocab_size - new_num_category_entities
if new_entity_counts is not None and any(count < 1 for count in new_entity_counts):
raise ValueError("All items in new_entity_counts must be greater than zero")
if model.config.normalize_entity_embeddings:
new_entity_embeddings = F.normalize(new_entity_embeddings)
new_entity_embeddings_module = nn.Embedding(
new_entity_vocab_size,
new_entity_emb_size,
padding_idx=new_padding_idx,
device=model.luke.entity_embeddings.entity_embeddings.weight.device,
dtype=model.luke.entity_embeddings.entity_embeddings.weight.dtype,
)
new_entity_embeddings_module.weight.data = new_entity_embeddings.data
model.luke.entity_embeddings.entity_embeddings = new_entity_embeddings_module
new_entity_decoder_module = nn.Linear(new_entity_emb_size, new_entity_vocab_size, bias=False)
model.entity_predictions.decoder = new_entity_decoder_module
model.entity_predictions.bias = nn.Parameter(torch.zeros(new_entity_vocab_size))
model.tie_weights()
if hasattr(model, "entity_log_probs"):
del model.entity_log_probs
model.config.entity_vocab_size = new_entity_vocab_size
model.config.num_normal_entities = new_num_normal_entities
model.config.num_category_entities = new_num_category_entities
model.config.entity_counts = new_entity_counts
gr.Info("モデルとトークナイザのエンティティの置き換えが完了しました", duration=5)
return True
with gr.Blocks() as demo:
texts = gr.State([])
entities_are_replaced = gr.State(False)
topk = gr.State(5)
entity_span_sensitivity = gr.State(1.0)
nayose_coef = gr.State(1.0)
batch_entity_spans = gr.State([])
topk_normal_entities = gr.State([])
topk_category_entities = gr.State([])
topk_span_entities = gr.State([])
selected_entity = gr.State()
similar_entities = gr.State([])
gr.Markdown("# 📝 LUXE Demo")
gr.Markdown("## 入力テキスト")
with gr.Tab(label="直接入力"):
text_input = gr.Textbox(label="入力テキスト")
with gr.Tab(label="ファイルアップロード"):
texts_file = gr.File(label="入力テキストファイル")
with gr.Accordion(label="LUXEのエンティティ語彙を置き換える", open=False):
new_entity_text_pairs_file = gr.File(label="エンティティと説明文のCSVファイル")
new_entity_text_pairs_input = gr.Dataframe(
# value=sample_new_entity_text_pairs,
headers=["entity", "text"],
col_count=(2, "fixed"),
type="array",
label="エンティティと説明文",
interactive=True,
)
replace_entity_button = gr.Button(value="エンティティ語彙を置き換える")
new_entity_text_pairs_file.change(
fn=get_new_entity_text_pairs_from_file, inputs=new_entity_text_pairs_file, outputs=new_entity_text_pairs_input
)
replace_entity_button.click(fn=replace_entities, inputs=new_entity_text_pairs_input, outputs=entities_are_replaced)
with gr.Accordion(label="ハイパーパラメータ", open=False):
topk_input = gr.Number(5, label="エンティティ件数", interactive=True)
entity_span_sensitivity_input = gr.Slider(
minimum=0.0, maximum=5.0, value=1.0, step=0.1, label="エンティティ検出の積極度", interactive=True
)
nayose_coef_input = gr.Slider(
minimum=0.0, maximum=2.0, value=1.0, step=0.1, label="文字列一致の優先度", interactive=True
)
text_input.change(fn=lambda text: [normalize_text(text)], inputs=text_input, outputs=texts)
texts_file.change(fn=get_texts_from_file, inputs=texts_file, outputs=texts)
topk_input.change(fn=lambda val: val, inputs=topk_input, outputs=topk)
entity_span_sensitivity_input.change(
fn=lambda val: val, inputs=entity_span_sensitivity_input, outputs=entity_span_sensitivity
)
nayose_coef_input.change(fn=lambda val: val, inputs=nayose_coef_input, outputs=nayose_coef)
texts.change(
fn=get_topk_entities_from_texts,
inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
topk.change(
fn=get_topk_entities_from_texts,
inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
entity_span_sensitivity.change(
fn=get_topk_entities_from_texts,
inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
nayose_coef.change(
fn=get_topk_entities_from_texts,
inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
topk_input.change(inputs=topk_input, outputs=topk)
gr.Markdown("---")
gr.Markdown("## 出力エンティティ")
@gr.render(inputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities])
def render_topk_entities(
texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
):
for text, entity_spans, normal_entities, category_entities, span_entities in zip(
texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
):
highlighted_text_value = []
cur = 0
for start, end in entity_spans:
if cur < start:
highlighted_text_value.append((text[cur:start], None))
highlighted_text_value.append((text[start:end], "Entity"))
cur = end
if cur < len(text):
highlighted_text_value.append((text[cur:], None))
gr.HighlightedText(
value=highlighted_text_value, color_map={"Entity": "green"}, combine_adjacent=False, label="Text"
)
# gr.Textbox(text, label="Text")
if normal_entities:
gr.Dataset(
label="テキスト全体に関連するエンティティ",
components=["text"],
samples=[[entity] for entity in normal_entities],
).select(fn=get_selected_entity, outputs=selected_entity)
if category_entities:
gr.Dataset(
label="テキスト全体に関連するカテゴリ",
components=["text"],
samples=[[entity] for entity in category_entities],
).select(fn=get_selected_entity, outputs=selected_entity)
span_texts = [text[start:end] for start, end in entity_spans]
for span_text, entities in zip(span_texts, span_entities):
gr.Dataset(
label=f"「{span_text}」に対応するエンティティ",
components=["text"],
samples=[[entity] for entity in entities],
).select(fn=get_selected_entity, outputs=selected_entity)
# gr.Markdown("---")
# gr.Markdown("## 選択されたエンティティの類似エンティティ")
# selected_entity.change(fn=get_similar_entities, inputs=selected_entity, outputs=similar_entities)
# @gr.render(inputs=[selected_entity, similar_entities])
# def render_similar_entities(selected_entity, similar_entities):
# gr.Textbox(selected_entity, label="Selected Entity")
# gr.Dataset(label="Similar Entities", components=["text"], samples=[[entity] for entity in similar_entities])
demo.launch()