import gradio as gr from transformers import pipeline, AutoModelForImageClassification, AutoFeatureExtractor from PIL import Image import torch import os import json # 设置 Kaggle API 凭证 # 设置 Kaggle API 凭证 # 设置 Kaggle API 凭证 def setup_kaggle(): # 创建 .kaggle 目录 os.makedirs(os.path.expanduser("~/.kaggle"), exist_ok=True) # 读取并写入 kaggle.json 文件 with open("./kaggle.json", "r") as f: # 使用相对路径 ./kaggle.json kaggle_token = json.load(f) with open(os.path.expanduser("~/.kaggle/kaggle.json"), "w") as f: json.dump(kaggle_token, f) os.chmod(os.path.expanduser("~/.kaggle/kaggle.json"), 0o600) # 从 Kaggle 下载模型文件 def download_model(): # 设置 Kaggle API 凭证 setup_kaggle() # 使用 Kaggle API 下载文件 os.system("kaggle kernels output sonia0822/20241015 -p /app") # 修改为您的 Kernel ID 和下载路径 # 确保模型文件已下载 if not os.path.exists("/app/model.pth"): raise FileNotFoundError("模型文件下载失败!") # 在加载模型前下载 if not os.path.exists("model.pth"): print("Downloading model...") download_model() # 模型保存路径 classification_model_path = "/app/model.pth" gpt2_model_path = "/app/gpt2-finetuned" # 加载分类模型和特征提取器 print("加载分类模型...") classification_model = AutoModelForImageClassification.from_pretrained( "microsoft/beit-base-patch16-224-pt22k", num_labels=16 ) classification_model.load_state_dict(torch.load(classification_model_path, map_location="cpu")) feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") print("分类模型加载成功") # 加载 GPT-2 文本生成模型 print("加载 GPT-2 模型...") gpt2_generator = pipeline("text-generation", model=gpt2_model_path, tokenizer=gpt2_model_path) print("GPT-2 模型加载成功") # 定义风格标签列表 art_styles = [ "现实主义", "巴洛克", "后印象派", "印象派", "浪漫主义", "超现实主义", "表现主义", "立体派", "野兽派", "抽象艺术", "新艺术", "象征主义", "新古典主义", "洛可可", "文艺复兴", "极简主义" ] # 标签映射 label_mapping = {0: 0, 2: 1, 3: 2, 4: 3, 7: 4, 9: 5, 10: 6, 12: 7, 15: 8, 17: 9, 18: 10, 20: 11, 21: 12, 23: 13, 24: 14, 25: 15} reverse_label_mapping = {v: k for k, v in label_mapping.items()} # 生成风格描述的函数 def classify_and_generate_description(image): image = image.convert("RGB") inputs = feature_extractor(images=image, return_tensors="pt").to("cpu") classification_model.eval() with torch.no_grad(): outputs = classification_model(**inputs).logits predicted_class = torch.argmax(outputs, dim=1).item() predicted_label = reverse_label_mapping.get(predicted_class, "未知") predicted_style = art_styles[predicted_class] if predicted_class < len(art_styles) else "未知" prompt = f"请详细描述{predicted_style}的艺术风格。" description = gpt2_generator(prompt, max_length=100, num_return_sequences=1)[0]["generated_text"] return predicted_style, description def ask_gpt2(question): response = gpt2_generator(question, max_length=100, num_return_sequences=1)[0]["generated_text"] return response # Gradio 界面 with gr.Blocks() as demo: gr.Markdown("# 艺术风格分类和生成描述") with gr.Row(): image_input = gr.Image(label="上传一张艺术图片") style_output = gr.Textbox(label="预测的艺术风格") description_output = gr.Textbox(label="生成的风格描述") with gr.Row(): question_input = gr.Textbox(label="输入问题") answer_output = gr.Textbox(label="GPT-2 生成的回答") classify_btn = gr.Button("生成风格描述") question_btn = gr.Button("问 GPT-2 一个问题") classify_btn.click(fn=classify_and_generate_description, inputs=image_input, outputs=[style_output, description_output]) question_btn.click(fn=ask_gpt2, inputs=question_input, outputs=answer_output) demo.launch()