import gc import html import io import os import queue import wave from argparse import ArgumentParser from functools import partial from pathlib import Path import gradio as gr import librosa import numpy as np import pyrootutils import torch from loguru import logger from transformers import AutoTokenizer pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) from fish_speech.i18n import i18n from fish_speech.text.chn_text_norm.text import Text as ChnNormedText from fish_speech.utils import autocast_exclude_mps, set_seed from tools.api import decode_vq_tokens, encode_reference from tools.file import AUDIO_EXTENSIONS, list_files from tools.llama.generate import ( GenerateRequest, GenerateResponse, WrappedGenerateResponse, launch_thread_safe_queue, ) from tools.vqgan.inference import load_model as load_decoder_model # Make einx happy os.environ["EINX_FILTER_TRACEBACK"] = "false" HEADER_MD = f"""# Fish Speech {i18n("A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).")} {i18n("You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.4).")} {i18n("Related code and weights are released under CC BY-NC-SA 4.0 License.")} {i18n("We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.")} """ TEXTBOX_PLACEHOLDER = i18n("Put your text here.") SPACE_IMPORTED = False def build_html_error_message(error): return f"""
{html.escape(str(error))}
""" @torch.inference_mode() def inference( text, enable_reference_audio, reference_audio, reference_text, max_new_tokens, chunk_length, top_p, repetition_penalty, temperature, seed="0", streaming=False, ): if args.max_gradio_length > 0 and len(text) > args.max_gradio_length: return ( None, None, i18n("Text is too long, please keep it under {} characters.").format( args.max_gradio_length ), ) seed = int(seed) if seed != 0: set_seed(seed) logger.warning(f"set seed: {seed}") # Parse reference audio aka prompt prompt_tokens = encode_reference( decoder_model=decoder_model, reference_audio=reference_audio, enable_reference_audio=enable_reference_audio, ) # LLAMA Inference request = dict( device=decoder_model.device, max_new_tokens=max_new_tokens, text=text, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, compile=args.compile, iterative_prompt=chunk_length > 0, chunk_length=chunk_length, max_length=2048, prompt_tokens=prompt_tokens if enable_reference_audio else None, prompt_text=reference_text if enable_reference_audio else None, ) response_queue = queue.Queue() llama_queue.put( GenerateRequest( request=request, response_queue=response_queue, ) ) if streaming: yield wav_chunk_header(), None, None segments = [] while True: result: WrappedGenerateResponse = response_queue.get() if result.status == "error": yield None, None, build_html_error_message(result.response) break result: GenerateResponse = result.response if result.action == "next": break with autocast_exclude_mps( device_type=decoder_model.device.type, dtype=args.precision ): fake_audios = decode_vq_tokens( decoder_model=decoder_model, codes=result.codes, ) fake_audios = fake_audios.float().cpu().numpy() segments.append(fake_audios) if streaming: wav_header = wav_chunk_header() audio_data = (fake_audios * 32768).astype(np.int16).tobytes() yield wav_header + audio_data, None, None if len(segments) == 0: return ( None, None, build_html_error_message( i18n("No audio generated, please check the input text.") ), ) # No matter streaming or not, we need to return the final audio audio = np.concatenate(segments, axis=0) yield None, (decoder_model.spec_transform.sample_rate, audio), None if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() inference_stream = partial(inference, streaming=True) n_audios = 4 global_audio_list = [] global_error_list = [] def inference_wrapper( text, enable_reference_audio, reference_audio, reference_text, max_new_tokens, chunk_length, top_p, repetition_penalty, temperature, seed, batch_infer_num, ): audios = [] errors = [] for _ in range(batch_infer_num): result = inference( text, enable_reference_audio, reference_audio, reference_text, max_new_tokens, chunk_length, top_p, repetition_penalty, temperature, seed, ) _, audio_data, error_message = next(result) audios.append( gr.Audio(value=audio_data if audio_data else None, visible=True), ) errors.append( gr.HTML(value=error_message if error_message else None, visible=True), ) for _ in range(batch_infer_num, n_audios): audios.append( gr.Audio(value=None, visible=False), ) errors.append( gr.HTML(value=None, visible=False), ) return None, *audios, *errors def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): buffer = io.BytesIO() with wave.open(buffer, "wb") as wav_file: wav_file.setnchannels(channels) wav_file.setsampwidth(bit_depth // 8) wav_file.setframerate(sample_rate) wav_header_bytes = buffer.getvalue() buffer.close() return wav_header_bytes def normalize_text(user_input, use_normalization): if use_normalization: return ChnNormedText(raw_text=user_input).normalize() else: return user_input def update_examples(): examples_dir = Path("references") examples_dir.mkdir(parents=True, exist_ok=True) example_audios = list_files(examples_dir, AUDIO_EXTENSIONS, recursive=True) return gr.Dropdown(choices=example_audios + [""]) def build_app(): with gr.Blocks(theme=gr.themes.Base()) as app: gr.Markdown(HEADER_MD) # Use light theme by default app.load( None, None, js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}" % args.theme, ) # Inference with gr.Row(): with gr.Column(scale=3): text = gr.Textbox( label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10 ) refined_text = gr.Textbox( label=i18n("Realtime Transform Text"), placeholder=i18n( "Normalization Result Preview (Currently Only Chinese)" ), lines=5, interactive=False, ) with gr.Row(): if_refine_text = gr.Checkbox( label=i18n("Text Normalization"), value=False, scale=1, ) with gr.Row(): with gr.Column(): with gr.Tab(label=i18n("Advanced Config")): with gr.Row(): chunk_length = gr.Slider( label=i18n("Iterative Prompt Length, 0 means off"), minimum=50, maximum=300, value=200, step=8, ) max_new_tokens = gr.Slider( label=i18n( "Maximum tokens per batch, 0 means no limit" ), minimum=0, maximum=2048, value=0, # 0 means no limit step=8, ) with gr.Row(): top_p = gr.Slider( label="Top-P", minimum=0.6, maximum=0.9, value=0.7, step=0.01, ) repetition_penalty = gr.Slider( label=i18n("Repetition Penalty"), minimum=1, maximum=1.5, value=1.2, step=0.01, ) with gr.Row(): temperature = gr.Slider( label="Temperature", minimum=0.6, maximum=0.9, value=0.7, step=0.01, ) seed = gr.Textbox( label="Seed", info="0 means randomized inference, otherwise deterministic", placeholder="any 32-bit-integer", value="0", ) with gr.Tab(label=i18n("Reference Audio")): with gr.Row(): gr.Markdown( i18n( "5 to 10 seconds of reference audio, useful for specifying speaker." ) ) with gr.Row(): enable_reference_audio = gr.Checkbox( label=i18n("Enable Reference Audio"), ) with gr.Row(): example_audio_dropdown = gr.Dropdown( label=i18n("Select Example Audio"), choices=[""], value="", interactive=True, allow_custom_value=True, ) with gr.Row(): reference_audio = gr.Audio( label=i18n("Reference Audio"), type="filepath", ) with gr.Row(): reference_text = gr.Textbox( label=i18n("Reference Text"), lines=1, placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。", value="", ) with gr.Tab(label=i18n("Batch Inference")): with gr.Row(): batch_infer_num = gr.Slider( label="Batch infer nums", minimum=1, maximum=n_audios, step=1, value=1, ) with gr.Column(scale=3): for _ in range(n_audios): with gr.Row(): error = gr.HTML( label=i18n("Error Message"), visible=True if _ == 0 else False, ) global_error_list.append(error) with gr.Row(): audio = gr.Audio( label=i18n("Generated Audio"), type="numpy", interactive=False, visible=True if _ == 0 else False, ) global_audio_list.append(audio) with gr.Row(): stream_audio = gr.Audio( label=i18n("Streaming Audio"), streaming=True, autoplay=True, interactive=False, show_download_button=True, ) with gr.Row(): with gr.Column(scale=3): generate = gr.Button( value="\U0001F3A7 " + i18n("Generate"), variant="primary" ) generate_stream = gr.Button( value="\U0001F3A7 " + i18n("Streaming Generate"), variant="primary", ) text.input( fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text] ) def select_example_audio(audio_path): audio_path = Path(audio_path) if audio_path.is_file(): lab_file = Path(audio_path.with_suffix(".lab")) if lab_file.exists(): lab_content = lab_file.read_text(encoding="utf-8").strip() else: lab_content = "" return str(audio_path), lab_content, True return None, "", False # Connect the dropdown to update reference audio and text example_audio_dropdown.change( fn=update_examples, inputs=[], outputs=[example_audio_dropdown] ).then( fn=select_example_audio, inputs=[example_audio_dropdown], outputs=[reference_audio, reference_text, enable_reference_audio], ) # # Submit generate.click( inference_wrapper, [ refined_text, enable_reference_audio, reference_audio, reference_text, max_new_tokens, chunk_length, top_p, repetition_penalty, temperature, seed, batch_infer_num, ], [stream_audio, *global_audio_list, *global_error_list], concurrency_limit=1, ) generate_stream.click( inference_stream, [ refined_text, enable_reference_audio, reference_audio, reference_text, max_new_tokens, chunk_length, top_p, repetition_penalty, temperature, seed, ], [stream_audio, global_audio_list[0], global_error_list[0]], concurrency_limit=1, ) return app def parse_args(): parser = ArgumentParser() parser.add_argument( "--llama-checkpoint-path", type=Path, default="checkpoints/fish-speech-1.4", ) parser.add_argument( "--decoder-checkpoint-path", type=Path, default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", ) parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq") parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--half", action="store_true") parser.add_argument("--compile", action="store_true") parser.add_argument("--max-gradio-length", type=int, default=0) parser.add_argument("--theme", type=str, default="light") return parser.parse_args() if __name__ == "__main__": args = parse_args() args.precision = torch.half if args.half else torch.bfloat16 logger.info("Loading Llama model...") llama_queue = launch_thread_safe_queue( checkpoint_path=args.llama_checkpoint_path, device=args.device, precision=args.precision, compile=args.compile, ) logger.info("Llama model loaded, loading VQ-GAN model...") decoder_model = load_decoder_model( config_name=args.decoder_config_name, checkpoint_path=args.decoder_checkpoint_path, device=args.device, ) logger.info("Decoder model loaded, warming up...") # Dry run to check if the model is loaded correctly and avoid the first-time latency list( inference( text="Hello, world!", enable_reference_audio=False, reference_audio=None, reference_text="", max_new_tokens=0, chunk_length=200, top_p=0.7, repetition_penalty=1.2, temperature=0.7, ) ) logger.info("Warming up done, launching the web UI...") app = build_app() app.launch(show_api=True, share=True)