Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,17 @@
|
|
1 |
-
import torch
|
2 |
import os
|
|
|
3 |
import soundfile as sf
|
4 |
-
from diffusers import StableAudioPipeline
|
5 |
from huggingface_hub import login
|
|
|
6 |
import gradio as gr
|
7 |
|
8 |
-
#
|
9 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
10 |
if HUGGINGFACE_TOKEN is None:
|
11 |
-
raise ValueError("Missing Hugging Face
|
12 |
-
|
13 |
-
# Authenticate with Hugging Face Hub
|
14 |
login(HUGGINGFACE_TOKEN)
|
15 |
|
16 |
-
# Set
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
19 |
|
@@ -24,22 +22,21 @@ pipe = StableAudioPipeline.from_pretrained(
|
|
24 |
)
|
25 |
pipe = pipe.to(device)
|
26 |
|
27 |
-
#
|
28 |
-
def generate_audio(prompt, negative_prompt, duration, seed):
|
29 |
generator = torch.Generator(device).manual_seed(seed)
|
30 |
audio_output = pipe(
|
31 |
prompt=prompt,
|
32 |
negative_prompt=negative_prompt,
|
33 |
-
num_inference_steps=
|
34 |
audio_end_in_s=duration,
|
35 |
num_waveforms_per_prompt=1,
|
36 |
generator=generator
|
37 |
).audios
|
38 |
-
|
39 |
-
# Save the generated audio
|
40 |
output_audio = audio_output[0].T.float().cpu().numpy()
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
# Gradio UI
|
45 |
with gr.Blocks() as demo:
|
@@ -69,4 +66,3 @@ with gr.Blocks() as demo:
|
|
69 |
|
70 |
# Launch the app
|
71 |
demo.launch()
|
72 |
-
|
|
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import soundfile as sf
|
|
|
4 |
from huggingface_hub import login
|
5 |
+
from diffusers import StableAudioPipeline
|
6 |
import gradio as gr
|
7 |
|
8 |
+
# Load Hugging Face token securely
|
9 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
10 |
if HUGGINGFACE_TOKEN is None:
|
11 |
+
raise ValueError("Missing Hugging Face token. Please set it in Spaces Secrets.")
|
|
|
|
|
12 |
login(HUGGINGFACE_TOKEN)
|
13 |
|
14 |
+
# Set device for PyTorch
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
17 |
|
|
|
22 |
)
|
23 |
pipe = pipe.to(device)
|
24 |
|
25 |
+
# Function to generate audio
|
26 |
+
def generate_audio(prompt, negative_prompt, duration, diffusion_steps, seed):
|
27 |
generator = torch.Generator(device).manual_seed(seed)
|
28 |
audio_output = pipe(
|
29 |
prompt=prompt,
|
30 |
negative_prompt=negative_prompt,
|
31 |
+
num_inference_steps=int(diffusion_steps), # Number of diffusion steps
|
32 |
audio_end_in_s=duration,
|
33 |
num_waveforms_per_prompt=1,
|
34 |
generator=generator
|
35 |
).audios
|
|
|
|
|
36 |
output_audio = audio_output[0].T.float().cpu().numpy()
|
37 |
+
output_file = "output.wav"
|
38 |
+
sf.write(output_file, output_audio, pipe.vae.sampling_rate)
|
39 |
+
return output_file
|
40 |
|
41 |
# Gradio UI
|
42 |
with gr.Blocks() as demo:
|
|
|
66 |
|
67 |
# Launch the app
|
68 |
demo.launch()
|
|