import os import io import cv2 import matplotlib.animation as animation import matplotlib.pyplot as plt import numpy as np import gradio as gr from scipy.integrate import quad_vec from math import tau from PIL import Image def fourier_transform_drawing(input_image, frames, coefficients, img_size): """ """ # Convert PIL to OpenCV image(array) input_image = np.array(input_image) img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) # processing # resize the image to a smaller size for faster processing dim = (img_size, img_size) img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA) imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(imgray, (5, 5), 0) (_, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # find the contour with the largest area largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours]) largest_contour = contours[largest_contour_idx] verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()] xs, ys = zip(*verts) xs, ys = np.asarray(xs), np.asarray(ys) # calculate the range of xs and ys x_range = np.max(xs) - np.min(xs) y_range = np.max(ys) - np.min(ys) # determine the scale factors desired_range = 400 scale_x = desired_range / x_range scale_y = desired_range / y_range # apply scaling # ys needs to be flipped vertically xs = (xs - np.mean(xs)) * scale_x ys = (-ys + np.mean(ys)) * scale_y # compute the Fourier coefficients num_points = 1000 # how many points to use for numerical integration t_values = np.linspace(0, tau, num_points) t_list = np.linspace(0, tau, len(xs)) def compute_cn(n, t_list, xs, ys): """ Integrate the contour along axis (-1) using the composite trapezoidal rule. https://numpy.org/doc/stable/reference/generated/numpy.trapz.html#r7aa6c77779c0-2 """ f_exp = np.interp(t, t_list, xs + 1j * ys) * np.exp(-n * t_values * 1j) coef = np.trapz(f_exp, t_values) / tau return coef N = coefficients coefs = [(compute_cn(0, t_list, xs, ys), 0)] + [(compute_cn(j, t_list, xs, ys), j) for i in range(1, N+1) for j in (i, -i)] # animate the drawings fig, ax = plt.subplots() circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)] circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)] drawing, = ax.plot([], [], 'r-', linewidth=2) ax.set_xlim(-desired_range, desired_range) ax.set_ylim(-desired_range, desired_range) ax.set_axis_off() ax.set_aspect('equal') fig.set_size_inches(15, 15) draw_x, draw_y = [], [] def animate(i, coefs, time): t = time[i] center = (0, 0) theta = np.linspace(0, tau, 80) for c, fr in coefs: c = c * np.exp(1j*(fr * tau * t) r = np.linalg.norm(c) x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta) circle_lines[_].set_data([center[0], center[0 ]+ np.real(c)], [center[1], center[1] + np.imag(c)]) circles[_].set_data(x, y) center = (center[0] + np.real(c), center[1] + np.imag(c)) draw_x.append(center[0]) draw_y.append(center[1]) drawing.set_data(draw_x[:i+1], draw_y[:i+1]) drawing_time = 1 time = np.linspace(0, drawing_time, num=frames) anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time)) # save the animation as an MP4 file output_animation = "output.mp4" anim.save(output_animation, fps=15) plt.close(fig) return output_animation # Gradio interface interface = gr.Interface( fn=fourier_transform_drawing, inputs=[ gr.Image(label="Input Image", sources=['upload'], type="pil"), gr.Slider(minimum=5, maximum=500, value=100, label="Number of Frames"), gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients"), gr.Number(value=224, label="Image size", precision=0) ], outputs=gr.Video(), title="Fourier Transform Drawing", description="Upload an image and generate a Fourier Transform drawing animation. You can find out more about the project here : https://github.com/staghado/fourier-draw", examples=[["Fourier2.jpg", 100, 100, 224], ["Luffy.png", 150, 200, 224]] ) if __name__ == "__main__": interface.launch()