import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from PIL import Image import cv2 from math import tau import gradio as gr from concurrent.futures import ThreadPoolExecutor import tempfile def process_image(input_image, img_size, blur_kernel_size, desired_range): img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA) imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(imgray, (blur_kernel_size, blur_kernel_size), 0) _, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours]) largest_contour = contours[largest_contour_idx] verts = [tuple(coord) for coord in largest_contour.squeeze()] xs, ys = np.asarray(list(zip(*verts))) x_range, y_range = np.max(xs) - np.min(xs), np.max(ys) - np.min(ys) scale_x, scale_y = desired_range / x_range, desired_range / y_range xs = (xs - np.mean(xs)) * scale_x ys = -(ys - np.mean(ys)) * scale_y return xs, ys def compute_cn(f_exp, n, t_values): coef = np.trapz(f_exp * np.exp(-n * t_values * 1j), t_values) / tau return coef def calculate_fourier_coefficients(xs, ys, num_points, coefficients): t_list = np.linspace(0, tau, len(xs)) t_values = np.linspace(0, tau, num_points) f_precomputed = np.interp(t_values, t_list, xs + 1j * ys) N = coefficients indices = [0] + [j for i in range(1, N + 1) for j in (i, -i)] with ThreadPoolExecutor(max_workers=8) as executor: coefs = list(executor.map(lambda n: (compute_cn(f_precomputed, n, t_values), n), indices)) return coefs def setup_animation_env(img_size, desired_range, coefficients): fig, ax = plt.subplots() circles = [ax.plot([], [], 'b-')[0] for _ in range(-coefficients, coefficients + 1)] circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-coefficients, coefficients + 1)] drawing, = ax.plot([], [], 'r-', linewidth=2) ax.set_xlim(-desired_range, desired_range) ax.set_ylim(-desired_range, desired_range) ax.set_axis_off() ax.set_aspect('equal') fig.set_size_inches(15, 15) fig.canvas.draw() background = fig.canvas.copy_from_bbox(ax.bbox) return fig, ax, background, circles, circle_lines, drawing def animate(frame, coefs, frame_times, fig, ax, background, circles, circle_lines, drawing, draw_x, draw_y, coefs_static, theta): fig.canvas.restore_region(background) center = (0, 0) for idx, (r, fr) in enumerate(coefs_static): c_dynamic = coefs[idx][0] * np.exp(1j * (fr * tau * frame_times[frame])) x, y = center[0] + r * np.cos(theta[frame]), center[1] + r * np.sin(theta[frame]) circle_lines[idx].set_data([center[0], center[0] + np.real(c_dynamic)], [center[1], center[1] + np.imag(c_dynamic)]) circles[idx].set_data([x], [y]) center = (center[0] + np.real(c_dynamic), center[1] + np.imag(c_dynamic)) draw_x.append(center[0]) draw_y.append(center[1]) drawing.set_data(draw_x, draw_y) for circle in circles: ax.draw_artist(circle) for line in circle_lines: ax.draw_artist(line) ax.draw_artist(drawing) fig.canvas.blit(ax.bbox) # Convert canvas to PIL Image using buffer_rgba #fig.canvas.draw() buffer = fig.canvas.buffer_rgba() pil_image = Image.frombuffer("RGBA", fig.canvas.get_width_height(), buffer, "raw", "RGBA", 0, 1) return (pil_image, None) def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_kernel_size, desired_range, num_points): xs, ys = process_image(input_image, img_size, blur_kernel_size, desired_range) coefs = calculate_fourier_coefficients(xs, ys, num_points, coefficients) # Setup animation environment fig, ax, background, circles, circle_lines, drawing = setup_animation_env(img_size, desired_range, coefficients) coefs_static = [(np.linalg.norm(c), fr) for c, fr in coefs] frame_times = np.linspace(0, 1, num=frames) thetas = np.linspace(0, tau, num=frames) draw_x, draw_y = [], [] # Create a temporary file for the video with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file: video_path = temp_file.name # Generate and save each frame as a PIL image, and ultimately the video for frame in range(frames): pil_image, _ = animate(frame, coefs, frame_times, fig, ax, background, circles, circle_lines, drawing, draw_x, draw_y, coefs_static, thetas) yield pil_image, video_path # Save the animation as a video anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, frame_times, fig, ax, background, circles, circle_lines, drawing, draw_x, draw_y, coefs_static, thetas)) anim.save(video_path, fps=15) def setup_gradio_interface(): interface = gr.Interface( fn=fourier_transform_drawing, inputs=[ gr.Image(label="Drawing Progress", sources=['upload'], type="pil"), gr.Slider(minimum=5, maximum=500, value=100, label="Number of Frames"), gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients"), gr.Number(value=224, label="Image Size (px)", precision=0), gr.Slider(minimum=3, maximum=11, step=2, value=5, label="Blur Kernel Size (odd number)"), gr.Number(value=400, label="Desired Range for Scaling", precision=0), gr.Number(value=1000, label="Number of Points for Integration", precision=0), ], outputs=["image", gr.Video()], title="Fourier Transform Drawing", description="Upload an image and generate a Fourier Transform drawing animation." ) return interface if __name__ == "__main__": interface = setup_gradio_interface() interface.queue() interface.launch()