from dataclasses import dataclass, make_dataclass, field, fields as dataclass_fields from enum import Enum from src.about import Tasks @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False def fields(raw_class): """Get all fields from a dataclass instance or class.""" if isinstance(raw_class, type): # If raw_class is a class, create an instance first instance = raw_class() return [getattr(instance, field.name) for field in dataclass_fields(instance)] else: # If raw_class is already an instance return [getattr(raw_class, field.name) for field in dataclass_fields(raw_class)] ## Leaderboard columns def create_column_field(name: str, type: str, displayed_by_default: bool, hidden: bool = False, never_hidden: bool = False): return field(default_factory=lambda: ColumnContent(name, type, displayed_by_default, hidden, never_hidden)) # Create a list of tuples for the dataclass fields auto_eval_column_dict = [] # Add model information columns model_info_columns = [ ("T", "str", True, False, True), # name, type, displayed_by_default, hidden, never_hidden ("Model", "markdown", True, False, True), ("Security Score ⬆️", "number", True, False, False), ("Safetensors", "bool", True, False, False), ("Type", "str", True, False, False), ("Architecture", "str", False, False, False), ("Weight Format", "str", True, False, False), ("Precision", "str", True, False, False), ("Hub License", "str", True, False, False), ("Hub ❤️", "number", True, False, False), ("#Params (B)", "number", True, False, False), ("Available on Hub", "bool", True, False, False), ("Model SHA", "str", True, False, False) ] def make_valid_identifier(name): # Replace spaces and hyphens with underscores but preserve case valid = name.replace(" ", "_").replace("-", "_").replace("⬆️", "up") # Remove any other invalid characters but preserve case valid = "".join(c if c.isalnum() or c == "_" else "" for c in valid) # Ensure it starts with a letter if valid[0].isdigit(): valid = "n" + valid return valid # Create fields for each column for name, type_, displayed, hidden, never_hidden in model_info_columns: field_name = make_valid_identifier(name) auto_eval_column_dict.append( (field_name, ColumnContent, create_column_field(name, type_, displayed, hidden, never_hidden)) ) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) # Create an instance of AutoEvalColumn with default values auto_eval_column_instance = AutoEvalColumn() ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model: ColumnContent = field(default_factory=lambda: ColumnContent("model", "markdown", True)) revision: ColumnContent = field(default_factory=lambda: ColumnContent("revision", "str", True)) private: ColumnContent = field(default_factory=lambda: ColumnContent("private", "bool", True)) precision: ColumnContent = field(default_factory=lambda: ColumnContent("precision", "str", True)) weight_type: ColumnContent = field(default_factory=lambda: ColumnContent("weight_type", "str", True)) status: ColumnContent = field(default_factory=lambda: ColumnContent("status", "str", True)) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") FT = ModelDetails(name="fine-tuned", symbol="🔶") IFT = ModelDetails(name="instruction-tuned", symbol="⭕") RL = ModelDetails(name="RL-tuned", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "pretrained" in type or "🟢" in type: return ModelType.PT if "RL-tuned" in type or "🟦" in type: return ModelType.RL if "instruction-tuned" in type or "⭕" in type: return ModelType.IFT return ModelType.Unknown class WeightType(Enum): Safetensors = ModelDetails("Safetensors") PyTorch = ModelDetails("PyTorch") Other = ModelDetails("Other") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") Unknown = ModelDetails("?") @staticmethod def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 return Precision.Unknown # Column selection COLS = [ "T", "Model", "Security Score ⬆️", "Safetensors", "Type", "Architecture", "Weight Format", "Precision", "Hub License", "Hub ❤️", "#Params (B)", "Available on Hub", "Model SHA" ] EVAL_COLS = [c.name for c in fields(EvalQueueColumn())] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn())] BENCHMARK_COLS = ["Security Score ⬆️", "Safetensors"]