import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.leaderboard.read_evals import get_raw_eval_results def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" print(f"Getting raw eval results from {results_path} and {requests_path}") raw_data = get_raw_eval_results(results_path, requests_path) print(f"Got {len(raw_data)} raw eval results") if not raw_data: print("No raw data found!") return pd.DataFrame(columns=cols) all_data_json = [v.to_dict() for v in raw_data] print(f"Converted {len(all_data_json)} results to dict") print(f"Data before DataFrame creation: {all_data_json}") df = pd.DataFrame.from_records(all_data_json) print(f"Created DataFrame with columns: {df.columns.tolist()}") print(f"DataFrame before filtering:\n{df}") # Ensure all required columns exist before filtering for col in benchmark_cols: if col not in df.columns: print(f"Missing required column: {col}") df[col] = None # Filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] print(f"DataFrame after benchmark filtering:\n{df}") df = df.sort_values(by="Security Score ⬆️", ascending=False) print(f"DataFrame after sorting:\n{df}") df = df[cols].round(decimals=2) print(f"DataFrame after column selection:\n{df}") print(f"Final DataFrame has {len(df)} rows") return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" print(f"Looking for eval requests in {save_path}") all_evals = [] # Walk through all directories recursively for root, _, files in os.walk(save_path): for file in files: if file.endswith('.json'): file_path = os.path.join(root, file) print(f"Reading JSON file: {file_path}") with open(file_path) as fp: data = json.load(fp) # Create a new dict with the required column names formatted_data = { "model": make_clickable_model(data["model"]), "revision": data.get("revision", "main"), "private": data.get("private", False), "precision": data.get("precision", ""), "weight_type": data.get("weight_type", ""), "status": data.get("status", "") } all_evals.append(formatted_data) print(f"Found {len(all_evals)} total eval requests") pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] print(f"Pending: {len(pending_list)}, Running: {len(running_list)}, Finished: {len(finished_list)}") df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]