import json import os from collections import defaultdict import huggingface_hub from huggingface_hub import ModelCard from huggingface_hub.hf_api import ModelInfo from transformers import AutoConfig from transformers.models.auto.tokenization_auto import AutoTokenizer def check_model_card(repo_id: str) -> tuple[bool, str]: """Checks if the model card and license exist and have been filled""" try: card = ModelCard.load(repo_id) except huggingface_hub.utils.EntryNotFoundError: return False, "Please add a model card to your model to explain how you trained/fine-tuned it." # Enforce license metadata if card.data.license is None: if not ("license_name" in card.data and "license_link" in card.data): return False, ( "License not found. Please add a license to your model card using the `license` metadata or a" " `license_name`/`license_link` pair." ) # Enforce card content if len(card.text) < 200: return False, "Please add a description to your model card, it is too short." # Check for security considerations section # if "security" not in card.text.lower() and "security considerations" not in card.text.lower(): # return False, ( # "Please add a 'Security Considerations' section to your model card describing security implications, " # "known vulnerabilities, and safe usage guidelines." # ) return True, "" def check_safetensors_format(model_name: str, revision: str, token: str = None) -> tuple[bool, str]: """Checks if the model uses safetensors format""" try: # Use HF API to list repository files api = huggingface_hub.HfApi() files = api.list_repo_files(model_name, revision=revision, token=token) # Check for any .safetensors files in the repository if any(f.endswith('.safetensors') for f in files): return True, "" return False, ( "Model weights must be in safetensors format. Please convert your model using: \n" "```python\n" "from transformers import AutoModelForCausalLM\n" "from safetensors.torch import save_file\n\n" "model = AutoModelForCausalLM.from_pretrained('your-model')\n" "state_dict = model.state_dict()\n" "save_file(state_dict, 'model.safetensors')\n" "```" ) except Exception as e: return False, f"Error checking safetensors format: {str(e)}" def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str, AutoConfig]: """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" try: config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) if test_tokenizer: try: tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) except ValueError as e: return ( False, f"uses a tokenizer which is not in a transformers release: {e}", None ) except Exception as e: return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None) # Check safetensors format safetensors_check, safetensors_msg = check_safetensors_format(model_name, revision, token) if not safetensors_check: return False, safetensors_msg, None return True, None, config except ValueError: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", None ) except Exception as e: return False, "was not found on hub!", None def get_model_size(model_info: ModelInfo, precision: str): """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" try: model_size = round(model_info.safetensors["total"] / 1e9, 3) except (AttributeError, TypeError): return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 model_size = size_factor * model_size return model_size def get_model_arch(model_info: ModelInfo): """Gets the model architecture from the configuration""" return model_info.config.get("architectures", "Unknown") def already_submitted_models(requested_models_dir: str) -> tuple[set[str], defaultdict]: """Gather a list of already submitted models to avoid duplicates""" depth = 1 file_names = [] users_to_submission_dates = defaultdict(list) for root, _, files in os.walk(requested_models_dir): current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) if current_depth == depth: for file in files: if not file.endswith(".json"): continue try: with open(os.path.join(root, file), "r") as f: info = json.load(f) # Handle missing fields gracefully model = info.get('model', '') revision = info.get('revision', 'main') # default to main if missing precision = info.get('precision', '') file_names.append(f"{model}_{revision}_{precision}") # Select organisation if model.count("/") == 0 or "submitted_time" not in info: continue organisation, _ = model.split("/") users_to_submission_dates[organisation].append(info["submitted_time"]) except (json.JSONDecodeError, KeyError, IOError) as e: print(f"Warning: Skipping malformed file {file}: {str(e)}") continue return set(file_names), users_to_submission_dates