import os from dotenv import load_dotenv import gradio as gr from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from sentence_transformers import SentenceTransformer from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="google/gemma-1.1-7b-it", tokenizer_name="google/gemma-1.1-7b-it", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs # Ensure PDF directory exists os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def data_ingestion_from_directory(): # Use SimpleDirectoryReader on the directory containing the PDF files documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): chat_text_qa_msgs = [ ( "user", """ You are a Q&A assistant named RedfernsTech, created by the RedfernsTech team. You have been designed to provide accurate answers based on the context provided. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." # Example usage # Process PDF ingestion from directory print("Processing PDF ingestion from directory:", PDF_DIRECTORY) data_ingestion_from_directory() # Example query query = "How do I use the RedfernsTech Q&A assistant?" print("Query:", query) response = handle_query(query) print("Answer:", response) # prompt: create a gradio chatbot for this # Define the input and output components for the Gradio interface input_component = gr.Textbox( show_label=False, placeholder="Ask me anything about the document..." ) output_component = gr.Textbox() # Create the Gradio interface interface = gr.Interface( fn=handle_query, inputs=input_component, outputs=output_component, title="RedfernsTech Q&A Chatbot", description="Ask me anything about the uploaded document." ) # Launch the Gradio interface interface.launch(server_port=7861, share=True)