import gradio as gr from salient import vectr, clf from profanity import pf pf.set_censor("@") def predict(text): senti = clf.predict(vectr.transform([text])) if(pf.is_profane(text)): prof = True censored_text = pf.censor(text) else: prof = False censored_text = pf.censor(text) if (int(senti)): text_sent = "Salient" else: text_sent = "Not salient" return { "salient": text_sent, "profanity": prof, "censored_text": censored_text } demo = gr.Interface(fn=predict, inputs="text", outputs="json") demo.launch()