Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,12 @@
|
|
| 1 |
-
import
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
| 9 |
-
|
| 10 |
-
def
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
for val in history:
|
|
@@ -24,9 +16,9 @@ def respond(
|
|
| 24 |
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
-
|
| 28 |
response = ""
|
| 29 |
|
|
|
|
| 30 |
for message in client.chat_completion(
|
| 31 |
messages,
|
| 32 |
max_tokens=max_tokens,
|
|
@@ -35,30 +27,32 @@ def respond(
|
|
| 35 |
top_p=top_p,
|
| 36 |
):
|
| 37 |
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
response += token
|
| 40 |
-
yield response
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
+
# Initialize Flask app and Hugging Face client
|
| 5 |
+
app = Flask(__name__)
|
|
|
|
| 6 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 7 |
|
| 8 |
+
# Helper function to generate a response from the AI model
|
| 9 |
+
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
messages = [{"role": "system", "content": system_message}]
|
| 11 |
|
| 12 |
for val in history:
|
|
|
|
| 16 |
messages.append({"role": "assistant", "content": val[1]})
|
| 17 |
|
| 18 |
messages.append({"role": "user", "content": message})
|
|
|
|
| 19 |
response = ""
|
| 20 |
|
| 21 |
+
# Streaming response from the Hugging Face model
|
| 22 |
for message in client.chat_completion(
|
| 23 |
messages,
|
| 24 |
max_tokens=max_tokens,
|
|
|
|
| 27 |
top_p=top_p,
|
| 28 |
):
|
| 29 |
token = message.choices[0].delta.content
|
|
|
|
| 30 |
response += token
|
|
|
|
| 31 |
|
| 32 |
+
return response
|
| 33 |
+
|
| 34 |
+
# API endpoint to handle requests
|
| 35 |
+
@app.route("/chat", methods=["POST"])
|
| 36 |
+
def chat():
|
| 37 |
+
try:
|
| 38 |
+
data = request.json
|
| 39 |
+
message = data.get("message", "")
|
| 40 |
+
history = data.get("history", [])
|
| 41 |
+
system_message = data.get("system_message", "You are a friendly chatbot.")
|
| 42 |
+
max_tokens = data.get("max_tokens", 512)
|
| 43 |
+
temperature = data.get("temperature", 0.7)
|
| 44 |
+
top_p = data.get("top_p", 0.95)
|
| 45 |
+
|
| 46 |
+
# Validate inputs
|
| 47 |
+
if not isinstance(history, list) or not all(isinstance(pair, list) for pair in history):
|
| 48 |
+
return jsonify({"error": "Invalid history format. It should be a list of [message, response] pairs."}), 400
|
| 49 |
|
| 50 |
+
# Generate AI response
|
| 51 |
+
response = generate_response(message, history, system_message, max_tokens, temperature, top_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
return jsonify({"response": response})
|
| 54 |
+
except Exception as e:
|
| 55 |
+
return jsonify({"error": str(e)}), 500
|
| 56 |
|
| 57 |
if __name__ == "__main__":
|
| 58 |
+
app.run(host="0.0.0.0", port=8000)
|