|
import gradio as gr |
|
import torch |
|
import open_clip |
|
import joblib |
|
|
|
def predict(input_image): |
|
device = torch.device("cpu") |
|
model, _, preprocess = open_clip.create_model_and_transforms('ViT-L-14', pretrained='openai', device=device) |
|
|
|
image = preprocess(input_image).unsqueeze(0).to(device) |
|
|
|
with torch.amp.autocast(device_type=device.type): |
|
with torch.no_grad(): |
|
image_features = model.encode_image(image) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
|
|
embedding = image_features[0].cpu().float().numpy() |
|
|
|
model = joblib.load('model.pkl') |
|
result = model.predict([embedding]) |
|
|
|
return "Map" if result == 1 else "No map" |
|
|
|
demo = gr.Interface(fn=predict, inputs=gr.Image(label="Check whether the image is a map or not", type="pil"), outputs="text") |
|
demo.launch() |