import subprocess import gradio as gr import numpy as np import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from pandas.io.formats.style import Styler from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, Tasks, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, NUMERIC_INTERVALS, TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision, NShotType, ) from src.envs import API, DEVICE, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval # subprocess.run(["python", "scripts/fix_harness_import.py"]) def restart_space(): API.restart_space(repo_id=REPO_ID) def launch_backend(): _ = subprocess.run(["python", "main_backend.py"]) try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) leaderboard_df = original_df.copy() leaderboard_df = leaderboard_df[leaderboard_df[AutoEvalColumn.still_on_hub.name] == True] # leaderboard_df = leaderboard_df[('speakleash' not in leaderboard_df['model_name_for_query']) | ('Bielik' in leaderboard_df['model_name_for_query'])] ( finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) def style_df(df: pd.DataFrame) -> Styler: # new_df = df.copy(deep=True) # new_df['polish_poleval2018_task3_test_10k'] = -new_df['polish_poleval2018_task3_test_10k'] # new_df = new_df.to_frame() leaderboard_df_styled = df.style.background_gradient(cmap="RdYlGn") inverted_colors_columns = [] if "poleval2018_task3_test_10k" in df.columns: inverted_colors_columns.append("poleval2018_task3_test_10k") if '#Params (B)' in df.columns: inverted_colors_columns.append("#Params (B)'") leaderboard_df_styled = leaderboard_df_styled.background_gradient(cmap="RdYlGn_r", subset=inverted_colors_columns) rounding = {'#Params (B)': "{:.1f}"} for task in Tasks: rounding[task.value.col_name] = "{:.2f}" for column_name in ["Average ⬆️", "Avg g", "Avg mc", "Average old", "Avg RAG"]: rounding[column_name] = "{:.2f}" leaderboard_df_styled = leaderboard_df_styled.format(rounding) return leaderboard_df_styled # Searching and filtering def update_table( hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, nshot_query: list, show_deleted: bool, query: str, ): filtered_df = filter_models(hidden_df, type_query, size_query, nshot_query, precision_query, show_deleted) filtered_df = filter_queries(query, filtered_df) df = select_columns(filtered_df, columns) df = df.replace({'': np.nan}) return style_df(df) def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: always_here_cols = [ AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name, ] # We use COLS to maintain sorting filtered_df = df[ always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] ] return filtered_df def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: final_df = [] if query != "": queries = [q.strip() for q in query.split(";")] for _q in queries: _q = _q.strip() if _q != "": temp_filtered_df = search_table(filtered_df, _q) if len(temp_filtered_df) > 0: final_df.append(temp_filtered_df) if len(final_df) > 0: filtered_df = pd.concat(final_df) filtered_df = filtered_df.drop_duplicates( subset=[AutoEvalColumn.model.name, AutoEvalColumn.n_shot.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] ) return filtered_df def filter_models( df: pd.DataFrame, type_query: list, size_query: list, nshot_query: list, precision_query: list, show_deleted: bool ) -> pd.DataFrame: # Show all models if show_deleted: filtered_df = df else: # Show only still on the hub models filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] type_emoji = [t[0] for t in type_query] filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] print(df[AutoEvalColumn.n_shot.name]) print(nshot_query) filtered_df = filtered_df.loc[df[AutoEvalColumn.n_shot.name].isin(nshot_query + ["None"])] numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) filtered_df = filtered_df.loc[mask] return filtered_df demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): with gr.Row(): with gr.Column(): with gr.Row(): search_bar = gr.Textbox( placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", show_label=False, elem_id="search-bar", ) # with gr.Box(elem_id="box-filter"): filter_columns_type = gr.CheckboxGroup( label="Model types", choices=[t.to_str() for t in ModelType], value=[t.to_str() for t in ModelType], interactive=True, elem_id="filter-columns-type", visible=True, ) filter_columns_precision = gr.CheckboxGroup( label="Precision", choices=[i.value.name for i in Precision], value=[i.value.name for i in Precision], interactive=True, elem_id="filter-columns-precision", visible=False, ) filter_columns_size = gr.CheckboxGroup( label="Model sizes (in billions of parameters)", choices=list(NUMERIC_INTERVALS.keys()), value=list(NUMERIC_INTERVALS.keys()), interactive=True, elem_id="filter-columns-size", visible=True, ) filter_columns_nshot = gr.CheckboxGroup( label="N-shot", choices=[i.value.name for i in NShotType], value=[i.value.name for i in NShotType], interactive=True, elem_id="filter-columns-nshot", ) with gr.Row(): deleted_models_visibility = gr.Checkbox( value=False, label="Show private/deleted models", interactive=True ) with gr.Column(min_width=320): with gr.Row(): shown_columns = gr.CheckboxGroup( choices=[ c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.dummy ], value=[ c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden ], label="Select columns to show", elem_id="column-select", interactive=True, ) leaderboard_table_value=leaderboard_df[ [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + [AutoEvalColumn.dummy.name] ] leaderboard_df_styled=style_df(leaderboard_table_value) leaderboard_df_styled.precision = 2 leaderboard_table = gr.components.Dataframe( value=leaderboard_df_styled, headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, datatype=TYPES, elem_id="leaderboard-table", interactive=False, visible=True, # column_widths=["2%", "33%"] height=800 ) # Dummy leaderboard for handling the case when the user uses backspace key hidden_leaderboard_table_for_search = gr.components.Dataframe( value=original_df[COLS], headers=COLS, datatype=TYPES, visible=False, ) search_bar.submit( update_table, [ hidden_leaderboard_table_for_search, shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_nshot, deleted_models_visibility, search_bar, ], leaderboard_table, ) for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_nshot, deleted_models_visibility]: selector.change( update_table, [ hidden_leaderboard_table_for_search, shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_nshot, deleted_models_visibility, search_bar, ], leaderboard_table, queue=True, ) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") # with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): # with gr.Column(): # with gr.Row(): # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") # # with gr.Column(): # with gr.Accordion( # f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", # open=False, # ): # with gr.Row(): # finished_eval_table = gr.components.Dataframe( # value=finished_eval_queue_df, # headers=EVAL_COLS, # datatype=EVAL_TYPES, # row_count=5, # ) # with gr.Accordion( # f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", # open=False, # ): # with gr.Row(): # running_eval_table = gr.components.Dataframe( # value=running_eval_queue_df, # headers=EVAL_COLS, # datatype=EVAL_TYPES, # row_count=5, # ) # # with gr.Accordion( # f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", # open=False, # ): # with gr.Row(): # pending_eval_table = gr.components.Dataframe( # value=pending_eval_queue_df, # headers=EVAL_COLS, # datatype=EVAL_TYPES, # row_count=5, # ) # with gr.Row(): # gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") # # with gr.Row(): # with gr.Column(): # model_name_textbox = gr.Textbox(label="Model name") # revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") # model_type = gr.Dropdown( # choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], # label="Model type", # multiselect=False, # value=None, # interactive=True, # ) # # with gr.Column(): # precision = gr.Dropdown( # choices=[i.value.name for i in Precision if i != Precision.Unknown], # label="Precision", # multiselect=False, # value="float16" if DEVICE != "cpu" else "float32", # interactive=True, # ) # weight_type = gr.Dropdown( # choices=[i.value.name for i in WeightType], # label="Weights type", # multiselect=False, # value="Original", # interactive=True, # ) # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") # # submit_button = gr.Button("Submit Eval") # submission_result = gr.Markdown() # submit_button.click( # add_new_eval, # [ # model_name_textbox, # base_model_name_textbox, # revision_name_textbox, # precision, # weight_type, # model_type, # ], # submission_result, # ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) # scheduler.add_job(launch_backend, "interval", seconds=100) # will only allow one job to be run at the same time scheduler.start() demo.queue(default_concurrency_limit=40).launch()