import torch import torchaudio from einops import rearrange import gradio as gr import spaces import os import uuid import shutil import gzip import io # Importing the model-related functions from stable_audio_tools import get_pretrained_model from stable_audio_tools.inference.generation import generate_diffusion_cond # Load the model outside of the GPU-decorated function def load_model(): print("Loading model...") model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") print("Model loaded successfully.") return model, model_config def compress_file(file_path): compressed_file_path = file_path + '.gz' with open(file_path, 'rb') as f_in: with gzip.open(compressed_file_path, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) return compressed_file_path # Function to set up, generate, and process the audio @spaces.GPU(duration=25) # Allocate GPU only when this function is called def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7): print(f"Prompt received: {prompt}") print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}") device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Fetch the Hugging Face token from the environment variable hf_token = os.getenv('HF_TOKEN') print(f"Hugging Face token: {hf_token}") # Use pre-loaded model and configuration model, model_config = load_model() sample_rate = model_config["sample_rate"] sample_size = model_config["sample_size"] print(f"Sample rate: {sample_rate}, Sample size: {sample_size}") model = model.to(device) print("Model moved to device.") # Set up text and timing conditioning conditioning = [{ "prompt": prompt, "seconds_start": 0, "seconds_total": seconds_total }] print(f"Conditioning: {conditioning}") # Generate stereo audio print("Generating audio...") output = generate_diffusion_cond( model, steps=steps, cfg_scale=cfg_scale, conditioning=conditioning, sample_size=sample_size, sigma_min=0.3, sigma_max=500, sampler_type="dpmpp-3m-sde", device=device ) print("Audio generated.") # Rearrange audio batch to a single sequence output = rearrange(output, "b d n -> d (b n)") print("Audio rearranged.") # Peak normalize, clip, convert to int16 output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() print("Audio normalized and converted.") # # Generate a unique filename for the output unique_filename = f"output_{uuid.uuid4().hex}.wav" print(f"Saving audio to file: {unique_filename}") # # Save to file torchaudio.save(unique_filename, output, sample_rate) print(f"Audio saved: {unique_filename}") # compressed_filename = compress_file(unique_filename) # return compressed_filename # # Return the path to the generated audio file return unique_filename # Convert audio tensor to bytes # byte_io = io.BytesIO() # torchaudio.save(byte_io, output, sample_rate, format="wav") # byte_io.seek(0) # audio_bytes = byte_io.read() # print("Audio converted to bytes.") # return audio_bytes DESCRIPTION = "Welcome to Raptor APIs" css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="GenAudio"): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") duration = gr.Slider(0, 47, value=30, label="Duration in Seconds") steps = gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps") cfg = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale") btn = gr.Button(value="generate") with gr.Column(): output = gr.Audio(label="audio") # output_byte_code = gr.Textbox(label="Byte Code Output") btn.click(generate_audio,inputs=[prompt,duration, steps, cfg],outputs=output,api_name="genAudio") # Pre-load the model to avoid multiprocessing issues model, model_config = load_model() # Launch the Interface demo.launch()