abdullahmubeen10's picture
Upload 5 files
d7e89a9 verified
import streamlit as st
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section {
background-color: #f9f9f9;
padding: 10px;
border-radius: 10px;
margin-top: 10px;
}
.section p, .section ul {
color: #666666;
}
.scroll {
overflow-x: auto;
border: 1px solid #e6e9ef;
border-radius: 0.25rem;
padding: 1rem;
margin-bottom: 2.5rem;
white-space: pre-wrap;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model, task):
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")
t5 = T5Transformer.pretrained(model) \
.setTask(task) \
.setInputCols(["documents"]) \
.setMaxOutputLength(200) \
.setOutputCol("transfers")
pipeline = Pipeline().setStages([documentAssembler, t5])
return pipeline
def fit_data(pipeline, data):
df = spark.createDataFrame([[data]]).toDF("text")
result = pipeline.fit(df).transform(df)
return result.select('transfers.result').collect()
# Sidebar setup
model = st.sidebar.selectbox(
"Choose the Pretrained Model",
['t5_active_to_passive_styletransfer', 't5_passive_to_active_styletransfer'],
help="Select the model you want to use for style transfer."
)
# Reference notebook link in sidebar
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(
"""
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/T5_LINGUISTIC.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
""",
unsafe_allow_html=True
)
examples = {
"t5_active_to_passive_styletransfer": [
"I am writing you a letter.",
"Reporters write news reports.",
"The company will hire new workers.",
"Emma writes a letter.",
"We did not grow rice.",
"People will admire him.",
"Someone has stolen my purse."
],
"t5_passive_to_active_styletransfer": [
"At dinner, six shrimp were eaten by Harry.",
"The savannah is roamed by beautiful giraffes.",
"The flat tire was changed by Sue.",
"The students' questions are always answered by the teacher."
]
}
task_descriptions = {
"t5_active_to_passive_styletransfer": "Transfer Active to Passive:",
"t5_passive_to_active_styletransfer": "Transfer Passive to Active:"
}
# Set up the page layout
title = "Switch Between Active and Passive Voice"
sub_title = "Effortlessly Transform Sentences and Explore Different Writing Styles"
st.markdown(f'<div class="main-title">{title}</div>', unsafe_allow_html=True)
st.markdown(f'<div style="text-align: center; color: #666666;">{sub_title}</div>', unsafe_allow_html=True)
# Text selection and analysis
selected_text = st.selectbox("Select an example", examples[model])
custom_input = st.text_input("Try it with your own sentence!")
text_to_analyze = custom_input if custom_input else selected_text
st.write('Text to analyze:')
st.markdown(f'<div class="scroll">{text_to_analyze}</div>', unsafe_allow_html=True)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model, task_descriptions[model])
output = fit_data(pipeline, text_to_analyze)
# Display transformed sentence
st.write("Predicted Sentence:")
output_text = "".join(output[0][0])
st.markdown(f'<div class="scroll">{output_text.title()}</div>', unsafe_allow_html=True)