# import numpy as np import gradio as gr import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline # from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # model_id = "openai/whisper-small" model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") # sample = dataset[0]["audio"] # result = pipe(sample) # print(result["text"]) def reverse_audio(audio): # sr, data = audio result = pipe(audio) print(result["text"]) return result input_audio = gr.Audio( sources=["microphone"], waveform_options=gr.WaveformOptions( waveform_color="#01C6FF", waveform_progress_color="#0066B4", skip_length=2, show_controls=False, ), ) demo = gr.Interface(fn=reverse_audio, inputs=input_audio, outputs="audio") if __name__ == "__main__": demo.launch()