from difflib import Differ
import gradio as gr
import torch
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
)
description = """
Roll up, roll up come test your diction against a 🤖
"""
diction_text = "How now brown cow"
test_text = f"""
"""
diction = gr.HTML(test_text)
device = "cpu"
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=8,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
def diff_texts(audio_input: str):
test_text = diction_text
d = Differ()
return [
(token[2:], token[0] if token[0] != "" else None)
for token in d.compare(test_text, audio_input)
]
def transcribe_audio(audio):
result = pipe(audio)
print(f'TRANSCRIPTION {result["text"]}')
diff_text = diff_texts(result["text"])
print("diff", diff_text)
return diff_text
highlighted_results = gr.HighlightedText(
label="Diff",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"},
)
input_audio = gr.Audio(
sources=["microphone"],
type="filepath",
waveform_options=gr.WaveformOptions(
waveform_color="#01C6FF",
waveform_progress_color="#0066B4",
skip_length=2,
show_controls=False,
),
)
demo = gr.Interface(
fn=transcribe_audio,
inputs=[diction, input_audio],
outputs=highlighted_results,
title="Test your diction",
description=description,
theme="abidlabs/Lime",
)
if __name__ == "__main__":
demo.launch()