from difflib import Differ import gradio as gr import torch from transformers import ( AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, ) description = """

Roll up, roll up come test your diction against a 🤖

""" diction_text = "How now brown cow" test_text = f"""

{diction_text}

""" diction = gr.HTML(test_text) device = "cpu" # device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( task="automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=8, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) def diff_texts(audio_input: str): test_text = diction_text d = Differ() return [ (token[2:], token[0] if token[0] != "" else None) for token in d.compare(test_text, audio_input) ] def transcribe_audio(audio): result = pipe(audio) print(f'TRANSCRIPTION {result["text"]}') diff_text = diff_texts(result["text"]) print("diff", diff_text) return diff_text highlighted_results = gr.HighlightedText( label="Diff", combine_adjacent=True, show_legend=True, color_map={"+": "red", "-": "green"}, ) input_audio = gr.Audio( sources=["microphone"], type="filepath", waveform_options=gr.WaveformOptions( waveform_color="#01C6FF", waveform_progress_color="#0066B4", skip_length=2, show_controls=False, ), ) demo = gr.Interface( fn=transcribe_audio, inputs=[diction, input_audio], outputs=highlighted_results, title="Test your diction", description=description, theme="abidlabs/Lime", ) if __name__ == "__main__": demo.launch()