from difflib import Differ import gradio as gr import string import torch from transformers import ( AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, ) diction_text = """ How is this leisure to be disposed of? In the public-house? the singing hall? the dancing-saloon? which hold out seductions somewhat more dangerous, methinks, to honest labour than those presented by a library... We may well rejoice, then, when we see a room such as this filled with attentive and reflective readers. """ def set_text(text_for_display=diction_text): return text_for_display diction_script = gr.Textbox( set_text, interactive=False, show_label=False, placeholder=diction_text ) device = "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" description = f"""

Welcome to Redmond Barry-oke!

This app aims to demonstrate the potential of using machine learning to transcribe audio. Users are invited to record themselves reading a brief and abridged excerpt from a speech delivered by Sir Redmond Barry at the opening of The Free Public Library of Ballarat Est in 1869<./p>

Once recorded the audio can be submitted which will invoke the {model_id} machine learning model that is designed to convert the audio to text

When a transcript is ready, any punctuation is stripped out and it's compared with a stripped version of the original text

Any differences are highlighted using colour

Finally the differences are calculated as a percentage of the total number of characters, giving an accuracy score

A full transcript of Sir Redmond Barry's speech can be read in the La Trobe Journal

""" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( task="automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=8, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) def prepare_text_for_comparison(text_to_clean: str): text_to_clean = text_to_clean.translate(str.maketrans("", "", string.punctuation)) return text_to_clean.casefold() def diff_texts(diction_text: str, audio_input: str): d = Differ() return [ (token[2:], token[0] if token[0] != "" else None) for token in d.compare(diction_text, audio_input) ] def calc_score(diff_texts: list) -> float: diff_chars = [char for char in diff_texts if char[1] != " "] score = float((len(diff_chars) / len(diff_texts)) * 100) score = 100 - score return score def transcribe_audio(diction_text, audio): result = pipe(audio) cleaned_result = prepare_text_for_comparison(result["text"]) cleaned_diction_text = prepare_text_for_comparison(diction_text) diff_text = diff_texts(cleaned_diction_text, cleaned_result) score = calc_score(diff_text) formatted_score = f"{str(round(score,3))}%" return result["text"], diff_text, formatted_score transcribed_text = gr.Textbox(label="Transcribed text") highlighted_results = gr.HighlightedText( label="Text highlighted with diffs", combine_adjacent=True, show_legend=True, color_map={"+": "green", "-": "red"}, ) score = gr.Textbox("0%", label="Barry-oke score") input_audio = gr.Audio( sources=["microphone"], type="filepath", waveform_options=gr.WaveformOptions( waveform_color="#01C6FF", waveform_progress_color="#0066B4", skip_length=2, show_controls=False, ), ) demo = gr.Interface( fn=transcribe_audio, inputs=[diction_script, input_audio], outputs=[transcribed_text, highlighted_results, score], title="Redmond Barry-oke", description=description, ) if __name__ == "__main__": demo.launch()