Create dataset.py
Browse files- detector/dataset.py +86 -0
detector/dataset.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch.utils.data import Dataset
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from transformers import PreTrainedTokenizer
|
| 9 |
+
|
| 10 |
+
from .download import download
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def load_texts(data_file, expected_size=None):
|
| 14 |
+
texts = []
|
| 15 |
+
|
| 16 |
+
for line in tqdm(open(data_file), total=expected_size, desc=f'Loading {data_file}'):
|
| 17 |
+
texts.append(json.loads(line)['text'])
|
| 18 |
+
|
| 19 |
+
return texts
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class Corpus:
|
| 23 |
+
def __init__(self, name, data_dir='data', skip_train=False):
|
| 24 |
+
download(name, data_dir=data_dir)
|
| 25 |
+
self.name = name
|
| 26 |
+
self.train = load_texts(f'{data_dir}/{name}.train.jsonl', expected_size=250000) if not skip_train else None
|
| 27 |
+
self.test = load_texts(f'{data_dir}/{name}.test.jsonl', expected_size=5000)
|
| 28 |
+
self.valid = load_texts(f'{data_dir}/{name}.valid.jsonl', expected_size=5000)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class EncodedDataset(Dataset):
|
| 32 |
+
def __init__(self, real_texts: List[str], fake_texts: List[str], tokenizer: PreTrainedTokenizer,
|
| 33 |
+
max_sequence_length: int = None, min_sequence_length: int = None, epoch_size: int = None,
|
| 34 |
+
token_dropout: float = None, seed: int = None):
|
| 35 |
+
self.real_texts = real_texts
|
| 36 |
+
self.fake_texts = fake_texts
|
| 37 |
+
self.tokenizer = tokenizer
|
| 38 |
+
self.max_sequence_length = max_sequence_length
|
| 39 |
+
self.min_sequence_length = min_sequence_length
|
| 40 |
+
self.epoch_size = epoch_size
|
| 41 |
+
self.token_dropout = token_dropout
|
| 42 |
+
self.random = np.random.RandomState(seed)
|
| 43 |
+
|
| 44 |
+
def __len__(self):
|
| 45 |
+
return self.epoch_size or len(self.real_texts) + len(self.fake_texts)
|
| 46 |
+
|
| 47 |
+
def __getitem__(self, index):
|
| 48 |
+
if self.epoch_size is not None:
|
| 49 |
+
label = self.random.randint(2)
|
| 50 |
+
texts = [self.fake_texts, self.real_texts][label]
|
| 51 |
+
text = texts[self.random.randint(len(texts))]
|
| 52 |
+
else:
|
| 53 |
+
if index < len(self.real_texts):
|
| 54 |
+
text = self.real_texts[index]
|
| 55 |
+
label = 1
|
| 56 |
+
else:
|
| 57 |
+
text = self.fake_texts[index - len(self.real_texts)]
|
| 58 |
+
label = 0
|
| 59 |
+
|
| 60 |
+
tokens = self.tokenizer.encode(text)
|
| 61 |
+
|
| 62 |
+
if self.max_sequence_length is None:
|
| 63 |
+
tokens = tokens[:self.tokenizer.max_len - 2]
|
| 64 |
+
else:
|
| 65 |
+
output_length = min(len(tokens), self.max_sequence_length)
|
| 66 |
+
if self.min_sequence_length:
|
| 67 |
+
output_length = self.random.randint(min(self.min_sequence_length, len(tokens)), output_length + 1)
|
| 68 |
+
start_index = 0 if len(tokens) <= output_length else self.random.randint(0, len(tokens) - output_length + 1)
|
| 69 |
+
end_index = start_index + output_length
|
| 70 |
+
tokens = tokens[start_index:end_index]
|
| 71 |
+
|
| 72 |
+
if self.token_dropout:
|
| 73 |
+
dropout_mask = self.random.binomial(1, self.token_dropout, len(tokens)).astype(np.bool)
|
| 74 |
+
tokens = np.array(tokens)
|
| 75 |
+
tokens[dropout_mask] = self.tokenizer.unk_token_id
|
| 76 |
+
tokens = tokens.tolist()
|
| 77 |
+
|
| 78 |
+
if self.max_sequence_length is None or len(tokens) == self.max_sequence_length:
|
| 79 |
+
mask = torch.ones(len(tokens) + 2)
|
| 80 |
+
return torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]), mask, label
|
| 81 |
+
|
| 82 |
+
padding = [self.tokenizer.pad_token_id] * (self.max_sequence_length - len(tokens))
|
| 83 |
+
tokens = torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id] + padding)
|
| 84 |
+
mask = torch.ones(tokens.shape[0])
|
| 85 |
+
mask[-len(padding):] = 0
|
| 86 |
+
return tokens, mask, label
|