import math import random import os import json import time import argparse import torch import numpy as np from torchvision import transforms from models.region_diffusion import RegionDiffusion from utils.attention_utils import get_token_maps from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\ get_attention_control_input, get_gradient_guidance_input import gradio as gr from PIL import Image, ImageOps help_text = """ Instructions placeholder. """ def main(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = RegionDiffusion(device) def generate( text_input: str, negative_text: str, height: int, width: int, seed: int, steps: int, guidance_weight: float, color_guidance_weight: float, ): run_dir = 'results/' # Load region diffusion model. steps = 41 if not steps else steps guidance_weight = 8.5 if not guidance_weight else guidance_weight # parse json to span attributes base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\ color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json( json.loads(text_input), device) # create control input for region diffusion region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input( model, base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens, color_text_prompts, color_names) # create control input for cross attention text_format_dict = get_attention_control_input( model, base_tokens, size_text_prompts_and_sizes) # create control input for region guidance text_format_dict, color_target_token_ids = get_gradient_guidance_input( model, base_tokens, color_text_prompts, color_rgbs, text_format_dict, color_guidance_weight=color_guidance_weight) seed_everything(seed) # get token maps from plain text to image generation. begin_time = time.time() if model.attention_maps is None: model.register_evaluation_hooks() else: model.reset_attention_maps() plain_img = model.produce_attn_maps([base_text_prompt], [negative_text], height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_weight) print('time lapses to get attention maps: %.4f' % (time.time()-begin_time)) color_obj_masks, _ = get_token_maps( model.attention_maps, run_dir, width//8, height//8, color_target_token_ids, seed) model.masks, token_maps = get_token_maps( model.attention_maps, run_dir, width//8, height//8, region_target_token_ids, seed, base_tokens) color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width), interpolation=transforms.InterpolationMode.BICUBIC, antialias=True) for color_obj_mask in color_obj_masks] text_format_dict['color_obj_atten'] = color_obj_masks model.remove_evaluation_hooks() # generate image from rich text begin_time = time.time() seed_everything(seed) rich_img = model.prompt_to_img(region_text_prompts, [negative_text], height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_weight, use_grad_guidance=use_grad_guidance, text_format_dict=text_format_dict) print('time lapses to generate image from rich text: %.4f' % (time.time()-begin_time)) cat_img = np.concatenate([plain_img[0], rich_img[0]], 1) return [cat_img, token_maps] with gr.Blocks() as demo: gr.HTML("""

Expressive Text-to-Image Generation with Rich Text

Visit our rich-text-to-json interface to generate rich-text JSON input.

""") with gr.Row(): with gr.Column(): text_input = gr.Textbox( label='Rich-text JSON Input', max_lines=1, placeholder='Example: \'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}\'') negative_prompt = gr.Textbox( label='Negative Prompt', max_lines=1, placeholder='') seed = gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, value=6) color_guidance_weight = gr.Slider(label='Color weight lambda', minimum=0, maximum=2, step=0.1, value=0.5) with gr.Accordion('Other Parameters', open=False): steps = gr.Slider(label='Number of Steps', minimum=0, maximum=500, step=1, value=41) guidance_weight = gr.Slider(label='CFG weight', minimum=0, maximum=50, step=0.1, value=8.5) width = gr.Dropdown(choices=[512, 768, 896], value=512, label='Width', visible=True) height = gr.Dropdown(choices=[512, 768, 896], value=512, label='height', visible=True) with gr.Row(): with gr.Column(scale=1, min_width=100): generate_button = gr.Button("Generate") with gr.Column(): result = gr.Image(label='Result') token_map = gr.Image(label='TokenMap') with gr.Row(): examples = [ [ '{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}', '', 512, 512, 6, 1, ], [ '{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "50px"}, "insert": "pineapples"}, {"insert": ", pepperonis, and mushrooms on the top, 4k, photorealistic"}]}', 'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality', 768, 896, 6, 1, ], [ '{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":""}]}', '', 512, 512, 3, 1, ], [ '{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}', '', 512, 512, 6, 1, ], [ {"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"night sky filled with stars"},{"insert":" above a "},{"attributes":{"font":"roboto"},"insert":"turbulent sea with giant waves"},{"insert":"\n"}]}, '', 512, 512, 6, 1, ], [ {"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"},{"insert":"\n"}]}, '', 512, 512, 9, 1, ], ] gr.Examples(examples=examples, inputs=[ text_input, negative_prompt, height, width, seed, color_guidance_weight, ], outputs=[ result, token_map, ], fn=generate, # cache_examples=True, examples_per_page=20) generate_button.click( fn=generate, inputs=[ text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, ], outputs=[result, token_map], ) demo.queue(concurrency_count=1) demo.launch(share=False) if __name__ == "__main__": main()