"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py""" import argparse import copy import json import logging import multiprocessing import os import random import shutil import sys import time from collections import defaultdict from pathlib import Path from typing import Any, Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch import torch.distributed as dist from datasets import concatenate_datasets, load_from_disk from torch.utils.data import DataLoader from transformers import ( AutoConfig, AutoTokenizer, BartForConditionalGeneration, BatchEncoding, DPRConfig, DPRContextEncoder, DPRContextEncoderTokenizerFast, RagConfig, RagSequenceForGeneration, RagTokenForGeneration, RagTokenizer, T5ForConditionalGeneration, ) from transformers import logging as transformers_logging from transformers.integrations import is_ray_available if is_ray_available(): import ray from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever from glob import glob from callbacks_rag import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from kb_encode_utils import add_index, embed_update from lightning_base import BaseTransformer, add_generic_args, generic_train from pynvml import nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo, nvmlInit from utils_rag import ( Seq2SeqDataset, calculate_exact_match, get_git_info, is_rag_model, lmap, pickle_save, save_git_info, save_json, set_extra_model_params, ) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) transformers_logging.set_verbosity_info() sys.path.insert(2, str(Path(__file__).resolve().parents[1])) isEmUpdateBusy = False isAddIndexBusy = False processes = [] threadHandle_index = None class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class GenerativeQAModule(BaseTransformer): mode = "generative_qa" loss_names = ["loss"] metric_names = ["em"] val_metric = "em" def __init__(self, hparams, **kwargs): # when loading from a pytorch lightning checkpoint, hparams are passed as dict if isinstance(hparams, dict): hparams = AttrDict(hparams) if hparams.model_type == "rag_sequence": self.model_class = RagSequenceForGeneration elif hparams.model_type == "rag_token": self.model_class = RagTokenForGeneration elif hparams.model_type == "bart": self.model_class = BartForConditionalGeneration else: self.model_class = T5ForConditionalGeneration self.is_rag_model = is_rag_model(hparams.model_type) config_class = RagConfig if self.is_rag_model else AutoConfig config = config_class.from_pretrained(hparams.model_name_or_path) # set retriever parameters config.index_name = hparams.index_name or config.index_name config.passages_path = hparams.passages_path or config.passages_path config.index_path = hparams.index_path or config.index_path config.use_dummy_dataset = hparams.use_dummy_dataset # set extra_model_params for generator configs and load_model extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout") if self.is_rag_model: if hparams.prefix is not None: config.generator.prefix = hparams.prefix config.label_smoothing = hparams.label_smoothing hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator) if hparams.distributed_retriever == "ray": # The Ray retriever needs the handles to the retriever actors. retriever = RagRayDistributedRetriever.from_pretrained( hparams.model_name_or_path, hparams.actor_handles, config=config ) if hparams.end2end: ctx_encoder_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained( "facebook/dpr-ctx_encoder-multiset-base" ) retriever.set_ctx_encoder_tokenizer(ctx_encoder_tokenizer) else: logger.info("please use RAY as the distributed retrieval method") model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever) if hparams.end2end: ctx_encoder = DPRContextEncoder.from_pretrained(hparams.context_encoder_name) model.set_context_encoder_for_training(ctx_encoder) prefix = config.question_encoder.prefix else: if hparams.prefix is not None: config.prefix = hparams.prefix hparams, config = set_extra_model_params(extra_model_params, hparams, config) model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config) prefix = config.prefix tokenizer = ( RagTokenizer.from_pretrained(hparams.model_name_or_path) if self.is_rag_model else AutoTokenizer.from_pretrained(hparams.model_name_or_path) ) self.config_dpr = DPRConfig.from_pretrained(hparams.context_encoder_name) self.custom_config = hparams self.context_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(hparams.context_encoder_name) super().__init__(hparams, config=config, tokenizer=tokenizer, model=model) save_git_info(self.hparams.output_dir) self.output_dir = Path(self.hparams.output_dir) self.dpr_ctx_check_dir = str(Path(self.hparams.output_dir)) + "/dpr_ctx_checkpoint" self.metrics_save_path = Path(self.output_dir) / "metrics.json" self.hparams_save_path = Path(self.output_dir) / "hparams.pkl" pickle_save(self.hparams, self.hparams_save_path) self.step_count = 0 self.metrics = defaultdict(list) self.dataset_kwargs: dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": prefix or "", } n_observations_per_split = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} self.target_lens = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" self.hparams.git_sha = get_git_info()["repo_sha"] self.num_workers = hparams.num_workers self.distributed_port = self.hparams.distributed_port # For single GPU training, init_ddp_connection is not called. # So we need to initialize the retrievers here. if hparams.gpus <= 1: if hparams.distributed_retriever == "ray": self.model.retriever.init_retrieval() else: logger.info("please use RAY as the distributed retrieval method") self.distributed_retriever = hparams.distributed_retriever def forward(self, input_ids, **kwargs): return self.model(input_ids, **kwargs) def ids_to_clean_text(self, generated_ids: List[int]): gen_text = self.tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) return lmap(str.strip, gen_text) def _step(self, batch: dict) -> Tuple: source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"] rag_kwargs = {} if isinstance(self.model, T5ForConditionalGeneration): decoder_input_ids = self.model._shift_right(target_ids) lm_labels = target_ids elif isinstance(self.model, BartForConditionalGeneration): decoder_input_ids = target_ids[:, :-1].contiguous() lm_labels = target_ids[:, 1:].clone() else: assert self.is_rag_model generator = self.model.rag.generator if isinstance(generator, T5ForConditionalGeneration): decoder_start_token_id = generator.config.decoder_start_token_id decoder_input_ids = ( torch.cat( [torch.tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids], dim=1, ) if target_ids.shape[0] < self.target_lens["train"] else generator._shift_right(target_ids) ) elif isinstance(generator, BartForConditionalGeneration): decoder_input_ids = target_ids lm_labels = decoder_input_ids rag_kwargs["reduce_loss"] = True assert decoder_input_ids is not None outputs = self( source_ids, attention_mask=source_mask, decoder_input_ids=decoder_input_ids, use_cache=False, labels=lm_labels, **rag_kwargs, ) loss = outputs["loss"] return (loss,) @property def pad(self) -> int: raise NotImplementedError("pad not implemented") def training_step(self, batch, batch_idx) -> Dict: global isEmUpdateBusy # use to check whether the entire embedding update process is finished or not global isAddIndexBusy # use to check whether the entire indexing process is finished or not global processes # use to keep threads embedding update processes global threadHandle_index # use to keep thread in embedding indexing processes if (self.trainer.global_rank == 0) and (self.custom_config.end2end): if (not batch_idx == 0) and (batch_idx % self.custom_config.indexing_freq == 0): free_gpu_list = [] nvmlInit() deviceCount = nvmlDeviceGetCount() my_list = json.loads(self.custom_config.gpu_order) for i in range(deviceCount): handle = nvmlDeviceGetHandleByIndex(i) info = nvmlDeviceGetMemoryInfo(handle) if info.used / 1e6 < 15: position = my_list.index(i) free_gpu_list.append("cuda:" + str(position)) if len(free_gpu_list) >= self.custom_config.index_gpus: has_free_gpus = True else: has_free_gpus = False if (not isEmUpdateBusy) and has_free_gpus: model_copy = type(self.model.rag.ctx_encoder)( self.config_dpr ) # get a new instance #this will be load in the CPU model_copy.load_state_dict(self.model.rag.ctx_encoder.state_dict()) # copy weights processes = [] if len(free_gpu_list) > self.custom_config.index_gpus: cuda_devices = random.sample(free_gpu_list, self.custom_config.index_gpus) else: cuda_devices = free_gpu_list num_processes = len(cuda_devices) for rank in range(num_processes): logger.info("Iniitializing embedding calculation process rank{}".format(rank)) device = cuda_devices[rank] p = multiprocessing.Process( target=embed_update, args=( copy.deepcopy(model_copy), num_processes, device, rank, self.custom_config.shard_dir, self.custom_config.csv_path, ), ) processes.append(p) for p in processes: p.start() isEmUpdateBusy = True if isEmUpdateBusy and (not isAddIndexBusy): index_process_list = [processes[k].is_alive() for k in range(self.custom_config.index_gpus)] if ( sum(index_process_list) == 0 ): # If entire list is false, we can say all embedding calculation process has finished logger.info("Start adding the index") threadHandle_index = multiprocessing.Process( target=add_index, args=( self.custom_config.shard_dir, self.config.index_path, ), ) threadHandle_index.start() isAddIndexBusy = True # check when index building has started if isAddIndexBusy: # check still the index_building process is happening if not threadHandle_index.is_alive(): logger.info("Merging the dataset shards") saved_dataset_shards = [] for address in glob(str(self.custom_config.shard_dir) + "/*/"): saved_dataset_shards.append(load_from_disk(address)) concat = concatenate_datasets(saved_dataset_shards) concat.save_to_disk(self.config.passages_path) # here we update the main passage file on the disk logger.info("done updating the dataset") # To Do (@Aaron) : Useful in the future dynamic memory implementation. # if you load the index from the disk make sure to update the index file here, otherwise it is ok to update the index file from the worker. # logger.info("then updating the index") # shutil.copy(self.custom_config.temp_index, self.config.idex_path) logger.info("Loading new passages and iniitalzing new index") self.trainer.model.module.module.model.rag.retriever.re_load() self.trainer.model.module.module.model.rag.retriever.init_retrieval() isEmUpdateBusy = False isAddIndexBusy = False self.trainer.strategy.barrier("barrier") loss_tensors = self._step(batch) logs = dict(zip(self.loss_names, loss_tensors)) # tokens per batch tgt_pad_token_id = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) src_pad_token_id = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) logs["tpb"] = ( batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum() ) self.log("loss", loss_tensors[0]) return loss_tensors[0] def validation_step(self, batch, batch_idx) -> Dict: return self._generative_step(batch) def validation_epoch_end(self, outputs, prefix="val") -> Dict: self.step_count += 1 losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} loss = losses["loss"] gen_metrics = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"] } metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss) gen_metrics.update({k: v.item() for k, v in losses.items()}) # fix for https://github.com/PyTorchLightning/pytorch-lightning/issues/2424 if dist.is_initialized(): dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM) metrics_tensor = metrics_tensor / dist.get_world_size() gen_metrics.update({self.val_metric: metrics_tensor.item()}) losses.update(gen_metrics) metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()} metrics["step_count"] = self.step_count self.save_metrics(metrics, prefix) # writes to self.metrics_save_path log_dict = { f"{prefix}_avg_em": metrics[f"{prefix}_avg_em"], "step_count": metrics["step_count"], f"{prefix}_avg_loss": metrics[f"{prefix}_avg_loss"], f"{prefix}_loss": loss, f"{prefix}_em": metrics_tensor, } self.log_dict(log_dict) def save_metrics(self, latest_metrics, type_path) -> None: self.metrics[type_path].append(latest_metrics) save_json(self.metrics, self.metrics_save_path) def calc_generative_metrics(self, preds, target) -> Dict: return calculate_exact_match(preds, target) def _generative_step(self, batch: dict) -> dict: start_time = time.time() batch = BatchEncoding(batch).to(device=self.model.device) generated_ids = self.model.generate( batch["input_ids"], attention_mask=batch["attention_mask"], do_deduplication=False, # rag specific parameter use_cache=True, min_length=1, max_length=self.target_lens["val"], ) gen_time = (time.time() - start_time) / batch["input_ids"].shape[0] preds: List[str] = self.ids_to_clean_text(generated_ids) target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"]) # print(preds,target) loss_tensors = self._step(batch) base_metrics = dict(zip(self.loss_names, loss_tensors)) gen_metrics: Dict = self.calc_generative_metrics(preds, target) summ_len = np.mean(lmap(len, generated_ids)) base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics) return base_metrics def test_step(self, batch, batch_idx): return self._generative_step(batch) def test_epoch_end(self, outputs): return self.validation_epoch_end(outputs, prefix="test") def get_dataset(self, type_path) -> Seq2SeqDataset: n_obs = self.n_obs[type_path] max_target_length = self.target_lens[type_path] dataset = Seq2SeqDataset( self.tokenizer, type_path=type_path, n_obs=n_obs, max_target_length=max_target_length, **self.dataset_kwargs, ) return dataset def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader: dataset = self.get_dataset(type_path) dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=dataset.collate_fn, shuffle=shuffle, num_workers=self.num_workers, ) return dataloader def train_dataloader(self) -> DataLoader: dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True) return dataloader def val_dataloader(self) -> DataLoader: return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size) def test_dataloader(self) -> DataLoader: return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count)) self.model.config.save_step = self.step_count # self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) if self.custom_config.end2end: modified_state_dict = self.model.state_dict() for key in self.model.state_dict().keys(): if key.split(".")[1] == "ctx_encoder": del modified_state_dict[key] self.model.save_pretrained(save_directory=save_path, state_dict=modified_state_dict) save_path_dpr = os.path.join(self.dpr_ctx_check_dir, "checkpoint{}".format(self.step_count)) self.model.rag.ctx_encoder.save_pretrained(save_path_dpr) self.context_tokenizer.save_pretrained(save_path_dpr) @staticmethod def add_model_specific_args(parser, root_dir): BaseTransformer.add_model_specific_args(parser, root_dir) add_generic_args(parser, root_dir) parser.add_argument( "--max_source_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--val_max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--test_max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default") parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--label_smoothing", type=float, default=0.0, required=False) parser.add_argument( "--prefix", type=str, default=None, help="Prefix added at the beginning of each text, typically used with T5-based models.", ) parser.add_argument( "--early_stopping_patience", type=int, default=-1, required=False, help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ), ) parser.add_argument( "--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training." ) parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart", "t5"], type=str, help=( "RAG model type: sequence or token, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--context_encoder_name", default="facebook/dpr-ctx_encoder-multiset-base", type=str, help="Name of the pre-trained context encoder checkpoint from the DPR", ) parser.add_argument( "--csv_path", default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv"), type=str, help="path of the raw KB csv", ) parser.add_argument("--end2end", action="store_true", help="whether to train the system end2end or not") parser.add_argument("--index_gpus", type=int, help="how many GPUs used in re-encoding process") parser.add_argument( "--shard_dir", type=str, default=str(Path(__file__).parent / "test_run" / "kb-shards"), help="directory used to keep temporary shards during the re-encode process", ) parser.add_argument( "--gpu_order", type=str, help=( "order of the GPU used during the fine-tuning. Used to finding free GPUs during the re-encode" " process. I do not have many GPUs :)" ), ) parser.add_argument("--indexing_freq", type=int, help="frequency of re-encode process") return parser @staticmethod def add_retriever_specific_args(parser): parser.add_argument( "--index_name", type=str, default=None, help=( "Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom'" " for a local index, or 'legacy' for the orignal one)" ), ) parser.add_argument( "--passages_path", type=str, default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset"), help=( "Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever" " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) parser.add_argument( "--index_path", type=str, default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset_hnsw_index.faiss"), help=( "Path to the faiss index for custom index. More info about custom indexes in the RagRetriever" " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) parser.add_argument( "--distributed_retriever", choices=["ray", "pytorch"], type=str, default="ray", help=( "What implementation to use for distributed retriever? If " "pytorch is selected, the index is loaded on training " "worker 0, and torch.distributed is used to handle " "communication between training worker 0, and the other " "training workers. If ray is selected, the Ray library is " "used to create load the index on separate processes, " "and Ray handles the communication between the training " "workers and the retrieval actors." ), ) parser.add_argument( "--use_dummy_dataset", type=bool, default=False, help=( "Whether to use the dummy version of the dataset index. More info about custom indexes in the" " RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) return parser @staticmethod def add_ray_specific_args(parser): # Ray cluster address. parser.add_argument( "--ray-address", default="auto", type=str, help=( "The address of the Ray cluster to connect to. If not " "specified, Ray will attempt to automatically detect the " "cluster. Has no effect if pytorch is used as the distributed " "retriever." ), ) parser.add_argument( "--num_retrieval_workers", type=int, default=1, help=( "The number of retrieval actors to use when Ray is selected" "for the distributed retriever. Has no effect when " "distributed_retriever is set to pytorch." ), ) return parser def main(args=None, model=None) -> GenerativeQAModule: parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) parser = GenerativeQAModule.add_retriever_specific_args(parser) args = args or parser.parse_args() Path(args.output_dir).mkdir(exist_ok=True) Path(args.output_dir + "/dpr_ctx_checkpoint").mkdir( exist_ok=True ) # save dpr_context encoder seprately for the future use print(args.shard_dir) if os.path.exists(args.shard_dir): # we do not need previous kb shards used in dataset re-conding and re-indexing shutil.rmtree(args.shard_dir) Path(args.shard_dir).mkdir(exist_ok=True) if os.path.exists( args.cache_dir ): # we do not need previous cache files used in dataset re-conding and re-indexing shutil.rmtree(args.cache_dir) Path(args.cache_dir).mkdir(exist_ok=True) named_actors = [] if args.distributed_retriever == "ray" and args.gpus > 1: if not is_ray_available(): raise RuntimeError("Please install Ray to use the Ray distributed retriever.") # Connect to an existing Ray cluster. try: ray.init(address=args.ray_address, namespace="rag") except (ConnectionError, ValueError): logger.warning( "Connection to Ray cluster failed. Make sure a Ray" "cluster is running by either using Ray's cluster " "launcher (`ray up`) or by manually starting Ray on " "each node via `ray start --head` for the head node " "and `ray start --address=':6379'` for " "additional nodes. See " "https://docs.ray.io/en/master/cluster/index.html " "for more info." ) raise # Create Ray actors only for rank 0. if ("LOCAL_RANK" not in os.environ or os.environ["LOCAL_RANK"] == 0) and ( "NODE_RANK" not in os.environ or os.environ["NODE_RANK"] == 0 ): remote_cls = ray.remote(RayRetriever) named_actors = [ remote_cls.options(name="retrieval_worker_{}".format(i)).remote() for i in range(args.num_retrieval_workers) ] else: logger.info( "Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format( os.environ["NODE_RANK"], os.environ["LOCAL_RANK"] ) ) named_actors = [ray.get_actor("retrieval_worker_{}".format(i)) for i in range(args.num_retrieval_workers)] args.actor_handles = named_actors assert args.actor_handles == named_actors if model is None: model: GenerativeQAModule = GenerativeQAModule(args) dataset = Path(args.data_dir).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir).startswith("/tmp") or str(args.output_dir).startswith("/var") ): training_logger = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger project = os.environ.get("WANDB_PROJECT", dataset) training_logger = WandbLogger(name=model.output_dir.name, project=project) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger training_logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}") es_callback = ( get_early_stopping_callback(model.val_metric, args.early_stopping_patience) if args.early_stopping_patience >= 0 else False ) trainer: pl.Trainer = generic_train( model, args, logging_callback=Seq2SeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric), early_stopping_callback=es_callback, logger=training_logger, profiler=pl.profiler.AdvancedProfiler() if args.profile else None, ) pickle_save(model.hparams, model.output_dir / "hparams.pkl") if not args.do_predict: return model # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": multiprocessing.set_start_method("spawn") parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) parser = GenerativeQAModule.add_retriever_specific_args(parser) parser = GenerativeQAModule.add_ray_specific_args(parser) # Pytorch Lightning Profiler parser.add_argument( "--profile", action="store_true", help="If True, use pytorch_lightning.profiler.AdvancedProfiler to profile the Trainer.", ) args = parser.parse_args() main(args)