import openai import gradio as gr from gradio.components import Audio, Textbox import os import re import tiktoken from transformers import GPT2Tokenizer import whisper import pandas as pd from datetime import datetime, timezone, timedelta import notion_df import concurrent.futures from IPython.core.display import HTML import spacy from spacy import displacy nlp = spacy.load("en_core_web_sm") # Define the tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') model = openai.api_key = os.environ["OAPI_KEY"] # Define the initial message and messages list initialt = 'You are a Renal System USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) \ to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response. \ You are going to keep answer and also challenge the student to learn renal phsysiology.' initial_message = {"role": "system", "content": initialt} messages = [initial_message] messages_rev = [initial_message] # Define the answer counter answer_count = 0 # Define the Notion API key API_KEY = os.environ["NAPI_KEY"] def transcribe(audio, text): global messages global answer_count transcript = {'text': ''} input_text = [] # Transcribe the audio if provided if audio is not None: audio_file = open(audio, "rb") transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en") # Tokenize the text input if text is not None: # Split the input text into sentences sentences = re.split("(?<=[.!?]) +", text) # Initialize a list to store the tokens input_tokens = [] # Add each sentence to the input_tokens list for sentence in sentences: # Tokenize the sentence using the GPT-2 tokenizer sentence_tokens = tokenizer.encode(sentence) # Check if adding the sentence would exceed the token limit if len(input_tokens) + len(sentence_tokens) < 1440: # Add the sentence tokens to the input_tokens list input_tokens.extend(sentence_tokens) else: # If adding the sentence would exceed the token limit, truncate it sentence_tokens = sentence_tokens[:1440-len(input_tokens)] input_tokens.extend(sentence_tokens) break # Decode the input tokens into text input_text = tokenizer.decode(input_tokens) # Add the input text to the messages list messages.append({"role": "user", "content": transcript["text"]+input_text}) # Check if the accumulated tokens have exceeded 2096 num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages) if num_tokens > 2096: # Concatenate the chat history chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system']) # Append the number of tokens used to the end of the chat transcript chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n" # Get the current time in Eastern Time (ET) now_et = datetime.now(timezone(timedelta(hours=-4))) # Format the time as string (YY-MM-DD HH:MM) published_date = now_et.strftime('%m-%d-%y %H:%M') # Upload the chat transcript to Notion df = pd.DataFrame([chat_transcript]) notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date+'back_up'), api_key=API_KEY) # Reset the messages list and answer counter messages = [initial_message] messages.append({"role": "user", "content": initialt}) answer_count = 0 # Add the input text to the messages list messages.append({"role": "user", "content": input_text}) else: # Increment the answer counter answer_count += 1 # Generate the system message using the OpenAI API with concurrent.futures.ThreadPoolExecutor() as executor: prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages] system_message = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, max_tokens=2000 )["choices"][0]["message"] # Wait for the completion of the OpenAI API call # Add the system message to the messages list messages.append(system_message) # Add the system message to the beginning of the messages list messages_rev.insert(0, system_message) # Add the input text to the messages list messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]}) # Concatenate the chat history chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system']) # chat_transcript_copy = chat_transcript # Append the number of tokens used to the end of the chat transcript chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n" # Upload the chat transcript to Notion now_et = datetime.now(timezone(timedelta(hours=-4))) published_date = now_et.strftime('%m-%d-%y %H:%M') df = pd.DataFrame([chat_transcript]) notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date), api_key=API_KEY) # Colorize the system message text colorized_system_message = colorize_text(system_message['content']) # Return the colorized chat transcript return colorized_system_message def colorize_text(text): doc = nlp(text) colorized_text = "" for token in doc: if token.ent_type_: colorized_text += f'{token.text_with_ws}' elif token.pos_ in {'NOUN'}: colorized_text += f'{token.text_with_ws}' else: colorized_text += token.text_with_ws return colorized_text # Define the input and output components for Gradio audio_input = Audio(source="microphone", type="filepath", label="Record your message") text_input = Textbox(label="Type your message", max_length=4096) output_text = Markdown() # Define the Gradio interface iface = gr.Interface( fn=transcribe, inputs=[audio_input, text_input], outputs=[output_text], title="Hold On, Pain Ends (HOPE)", description="Talk to Your USMLE Tutor HOPE", theme="compact", layout="vertical", allow_flagging=False ) # Run the Gradio interface iface.launch(debug=True,enable_queue=True)