nsethi610 commited on
Commit
7aa37cd
·
verified ·
1 Parent(s): ced663f

Create playground_utils.py

Browse files
Files changed (1) hide show
  1. playground_utils.py +60 -0
playground_utils.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from task import tasks_config
3
+ from pipeline_utils import handle_task_change, review_training_choices, test_pipeline
4
+ from playground_utils import create_playground_header, create_playground_footer, create_tabs_header
5
+
6
+ playground = gr.Blocks()
7
+
8
+ with playground:
9
+ create_playground_header()
10
+ with gr.Tabs():
11
+ with gr.TabItem("Text"):
12
+ radio, test_pipeline_button = create_tabs_header()
13
+ with gr.Row(visible=True) as use_pipeline:
14
+ with gr.Column():
15
+ task_dropdown = gr.Dropdown(
16
+ choices=[(task["name"], task_id)
17
+ for task_id, task in tasks_config.items()],
18
+ label="Task",
19
+ interactive=True,
20
+ info="Select Pipelines for natural language processing tasks or type if you have your own."
21
+ )
22
+ model_dropdown = gr.Dropdown(
23
+ [], label="Model", info="Select appropriate Model based on the task you selected")
24
+ prompt_textarea = gr.TextArea(
25
+ label="Prompt",
26
+ value="Enter your prompt here",
27
+ text_align="left",
28
+ info="Copy/Paste or type your prompt to try out. Make sure to provide clear prompt or try with different prompts"
29
+ )
30
+ context_for_question_answer = gr.TextArea(
31
+ label="Context",
32
+ value="Enter Context for your question here",
33
+ visible=False,
34
+ interactive=True,
35
+ info="Question answering tasks return an answer given a question. If you’ve ever asked a virtual assistant like Alexa, Siri or Google what the weather is, then you’ve used a question answering model before. Here, we are doing Extractive(extract the answer from the given context) Question answering. "
36
+ )
37
+ task_dropdown.change(handle_task_change,
38
+ inputs=[task_dropdown],
39
+ outputs=[context_for_question_answer,
40
+ model_dropdown, task_dropdown])
41
+ with gr.Column():
42
+ text = gr.TextArea(label="Generated Text")
43
+ radio.change(review_training_choices,
44
+ inputs=radio, outputs=use_pipeline)
45
+ test_pipeline_button.click(test_pipeline,
46
+ inputs=[
47
+ task_dropdown, model_dropdown, prompt_textarea, context_for_question_answer],
48
+ outputs=text)
49
+ with gr.TabItem("Image"):
50
+ radio, test_pipeline_button = create_tabs_header()
51
+ gr.Markdown("""
52
+ > WIP
53
+ """)
54
+ with gr.TabItem("Audio"):
55
+ radio, test_pipeline_button = create_tabs_header()
56
+ gr.Markdown("""
57
+ > WIP
58
+ """)
59
+ create_playground_footer()
60
+ playground.launch()