better tutoring flow
Browse files
agent.py
CHANGED
@@ -17,6 +17,11 @@ from langchain.memory import ConversationBufferWindowMemory
|
|
17 |
import random
|
18 |
from pydantic import Extra
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
import promptlayer
|
22 |
from langchain.callbacks import PromptLayerCallbackHandler
|
@@ -67,9 +72,67 @@ class GetrandomTool(BaseTool):
|
|
67 |
|
68 |
return text
|
69 |
|
70 |
-
def _arun(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
raise NotImplementedError("This tool does not support async")
|
72 |
|
|
|
|
|
73 |
class QMLAgent():
|
74 |
|
75 |
def __init__(self):
|
@@ -98,6 +161,8 @@ class QMLAgent():
|
|
98 |
random_tool.indexer = index
|
99 |
random_tool.index_max = index.describe_index_stats()["total_vector_count"]
|
100 |
|
|
|
|
|
101 |
|
102 |
tools = [
|
103 |
Tool(
|
@@ -119,6 +184,12 @@ class QMLAgent():
|
|
119 |
#return_direct=False
|
120 |
|
121 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
]
|
123 |
|
124 |
memory = ConversationBufferWindowMemory(k=os.environ["MEMORY_LENGTH"], memory_key="chat_history", return_messages=True)
|
|
|
17 |
import random
|
18 |
from pydantic import Extra
|
19 |
|
20 |
+
from langchain.chains import LLMChain
|
21 |
+
from langchain import PromptTemplate
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
|
26 |
import promptlayer
|
27 |
from langchain.callbacks import PromptLayerCallbackHandler
|
|
|
72 |
|
73 |
return text
|
74 |
|
75 |
+
def _arun(self, question: str):
|
76 |
+
raise NotImplementedError("This tool does not support async")
|
77 |
+
|
78 |
+
|
79 |
+
#Tutor tool?
|
80 |
+
#A chain with retrieval for answering, and a constant input summary of the
|
81 |
+
#tutoring flow so far
|
82 |
+
|
83 |
+
class TutoringTool(BaseTool):
|
84 |
+
name = "TutoringTool"
|
85 |
+
|
86 |
+
description = """This tool is capable of generating tutoring questions.
|
87 |
+
It has to be called with a summary of the previous tutoring discussion steps,
|
88 |
+
or in case of a new tutoring session, with a randomly chosen piece of material.
|
89 |
+
As for it's output, it has to be kept at it is, sent bakc to the user."""
|
90 |
+
|
91 |
+
class Config:
|
92 |
+
extra = Extra.allow
|
93 |
+
|
94 |
+
def _run(self, question: str):
|
95 |
+
# initiate chain and prompts
|
96 |
+
# Would be waaay more elegant to have it at init time, but...
|
97 |
+
prompt_template = """
|
98 |
+
You act as a knowledgeable tutor. Based on some previous [apropos]
|
99 |
+
(a question, a piace of material, or a summary of a tutoring session)
|
100 |
+
and some [relevant documents] generate a tutoring question,
|
101 |
+
that helps in systematically think about the topic at hand and
|
102 |
+
for which the answer is deepening the knowledge of the subject, getting closser to an aswer.
|
103 |
+
You should NOT answer the question at hand, just either ask a helping question
|
104 |
+
or confirm if an aswer is correct! This should be [your output].
|
105 |
+
|
106 |
+
[apropos]
|
107 |
+
{apropos}
|
108 |
+
|
109 |
+
[relevant_documents]
|
110 |
+
{relevant_documents}
|
111 |
+
|
112 |
+
[your output]:
|
113 |
+
"""
|
114 |
+
|
115 |
+
prompt = PromptTemplate(
|
116 |
+
input_variables=["apropos", "relevant_documents"],
|
117 |
+
template=prompt_template,
|
118 |
+
)
|
119 |
+
|
120 |
+
# do retrieval
|
121 |
+
relevant_documents = self.retriever.get_relevant_documents(question)
|
122 |
+
|
123 |
+
# concat the two
|
124 |
+
# execute a chain
|
125 |
+
llm = ChatOpenAI(model_name=os.environ["CHAT_MODEL"])
|
126 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
127 |
+
|
128 |
+
result = chain.run(apropos=question, relevant_documents=relevant_documents)
|
129 |
+
return result
|
130 |
+
|
131 |
+
def _arun(self, question: str):
|
132 |
raise NotImplementedError("This tool does not support async")
|
133 |
|
134 |
+
|
135 |
+
|
136 |
class QMLAgent():
|
137 |
|
138 |
def __init__(self):
|
|
|
161 |
random_tool.indexer = index
|
162 |
random_tool.index_max = index.describe_index_stats()["total_vector_count"]
|
163 |
|
164 |
+
tutoring_tool = TutoringTool()
|
165 |
+
tutoring_tool.retriever = retriever
|
166 |
|
167 |
tools = [
|
168 |
Tool(
|
|
|
184 |
#return_direct=False
|
185 |
|
186 |
),
|
187 |
+
Tool.from_function(
|
188 |
+
name="Tutoring",
|
189 |
+
func=tutoring_tool._run,
|
190 |
+
description=tutoring_tool.description,
|
191 |
+
return_direct=True
|
192 |
+
),
|
193 |
]
|
194 |
|
195 |
memory = ConversationBufferWindowMemory(k=os.environ["MEMORY_LENGTH"], memory_key="chat_history", return_messages=True)
|