Spaces:
Sleeping
Sleeping
Upload 10 files
Browse files- app.py +401 -0
- requirements.txt +12 -0
- weights/SRGAN.pt +3 -0
- weights/fsrcnn_x4.pth +3 -0
- weights/method1(0.668).pt +3 -0
- weights/method2(0.960).pt +3 -0
- weights/miniSRGAN.pt +3 -0
- weights/miniSRResNET.pt +3 -0
- weights/mobile_sr.pt +3 -0
- weights/tinySRGAN.pt +3 -0
app.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import warnings
|
3 |
+
import gradio as gr
|
4 |
+
import cv2
|
5 |
+
import torchvision
|
6 |
+
from torch import nn
|
7 |
+
from torchvision.models import mobilenet_v3_small
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision import transforms
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
warnings.filterwarnings("ignore")
|
16 |
+
|
17 |
+
|
18 |
+
def flip_text(x):
|
19 |
+
return x[::-1]
|
20 |
+
|
21 |
+
|
22 |
+
def method2_prep(image):
|
23 |
+
transforms = torchvision.transforms.Compose([
|
24 |
+
torchvision.transforms.Resize((256, 256)),
|
25 |
+
torchvision.transforms.CenterCrop((224, 224))
|
26 |
+
])
|
27 |
+
t_lower = 50
|
28 |
+
t_upper = 150
|
29 |
+
|
30 |
+
height, width = image.shape[:2]
|
31 |
+
|
32 |
+
x = (width - 1920) // 2
|
33 |
+
y = (height - 1080) // 2
|
34 |
+
|
35 |
+
image = image[y:y+1080, x:x+1920]
|
36 |
+
|
37 |
+
img = torch.from_numpy(cv2.Canny(image, t_lower, t_upper)[np.newaxis, ...])
|
38 |
+
img = torch.vstack((img, img, img))
|
39 |
+
|
40 |
+
return transforms(img.type(torch.float32))
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def model2_inf(x):
|
46 |
+
print("Method 2")
|
47 |
+
|
48 |
+
image = method2_prep(x).unsqueeze(dim=0)
|
49 |
+
model = mobilenet_v3_small(weights='DEFAULT')
|
50 |
+
model.classifier[3] = nn.Linear(in_features=1024, out_features=2, bias=True)
|
51 |
+
|
52 |
+
image_np = image[0].permute(1, 2, 0).cpu().numpy()
|
53 |
+
image_np = (image_np * 255).astype(np.uint8) # Ensure the image is of type uint8
|
54 |
+
|
55 |
+
model.load_state_dict(torch.load('./weights/method2(0.960).pt'))
|
56 |
+
#print("\nModel weights loaded successfully")
|
57 |
+
|
58 |
+
model.eval() # Set the model to evaluation mode
|
59 |
+
|
60 |
+
with torch.inference_mode():
|
61 |
+
model = model.to(device)
|
62 |
+
image = image.to(device)
|
63 |
+
output = torch.softmax(model(image), dim=1).detach().cpu()
|
64 |
+
prediction = torch.argmax(output, dim=1).item()
|
65 |
+
del model
|
66 |
+
torch.cuda.empty_cache()
|
67 |
+
if prediction == 0:
|
68 |
+
return "The image is not pixelated", None
|
69 |
+
else:
|
70 |
+
return "The image is pixelated", translate_image(Image.fromarray(x), False, 'TinySRGAN', 'False')
|
71 |
+
|
72 |
+
class _conv(nn.Conv2d):
|
73 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias):
|
74 |
+
super(_conv, self).__init__(in_channels = in_channels, out_channels = out_channels,
|
75 |
+
kernel_size = kernel_size, stride = stride, padding = (kernel_size) // 2, bias = True)
|
76 |
+
|
77 |
+
self.weight.data = torch.normal(torch.zeros((out_channels, in_channels, kernel_size, kernel_size)), 0.02)
|
78 |
+
self.bias.data = torch.zeros((out_channels))
|
79 |
+
|
80 |
+
for p in self.parameters():
|
81 |
+
p.requires_grad = True
|
82 |
+
|
83 |
+
|
84 |
+
class conv(nn.Module):
|
85 |
+
def __init__(self, in_channel, out_channel, kernel_size, BN = False, act = None, stride = 1, bias = True):
|
86 |
+
super(conv, self).__init__()
|
87 |
+
m = []
|
88 |
+
m.append(_conv(in_channels = in_channel, out_channels = out_channel,
|
89 |
+
kernel_size = kernel_size, stride = stride, padding = (kernel_size) // 2, bias = True))
|
90 |
+
|
91 |
+
if BN:
|
92 |
+
m.append(nn.BatchNorm2d(num_features = out_channel))
|
93 |
+
|
94 |
+
if act is not None:
|
95 |
+
m.append(act)
|
96 |
+
|
97 |
+
self.body = nn.Sequential(*m)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
out = self.body(x)
|
101 |
+
return out
|
102 |
+
|
103 |
+
class ResBlock(nn.Module):
|
104 |
+
def __init__(self, channels, kernel_size, act = nn.ReLU(inplace = True), bias = True):
|
105 |
+
super(ResBlock, self).__init__()
|
106 |
+
m = []
|
107 |
+
m.append(conv(channels, channels, kernel_size, BN = True, act = act))
|
108 |
+
m.append(conv(channels, channels, kernel_size, BN = True, act = None))
|
109 |
+
self.body = nn.Sequential(*m)
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
res = self.body(x)
|
113 |
+
res += x
|
114 |
+
return res
|
115 |
+
|
116 |
+
class BasicBlock(nn.Module):
|
117 |
+
def __init__(self, in_channels, out_channels, kernel_size, num_res_block, act = nn.ReLU(inplace = True)):
|
118 |
+
super(BasicBlock, self).__init__()
|
119 |
+
m = []
|
120 |
+
|
121 |
+
self.conv = conv(in_channels, out_channels, kernel_size, BN = False, act = act)
|
122 |
+
for i in range(num_res_block):
|
123 |
+
m.append(ResBlock(out_channels, kernel_size, act))
|
124 |
+
|
125 |
+
m.append(conv(out_channels, out_channels, kernel_size, BN = True, act = None))
|
126 |
+
|
127 |
+
self.body = nn.Sequential(*m)
|
128 |
+
|
129 |
+
def forward(self, x):
|
130 |
+
res = self.conv(x)
|
131 |
+
out = self.body(res)
|
132 |
+
out += res
|
133 |
+
|
134 |
+
return out
|
135 |
+
|
136 |
+
class Upsampler(nn.Module):
|
137 |
+
def __init__(self, channel, kernel_size, scale, act = nn.ReLU(inplace = True)):
|
138 |
+
super(Upsampler, self).__init__()
|
139 |
+
m = []
|
140 |
+
m.append(conv(channel, channel * scale * scale, kernel_size))
|
141 |
+
m.append(nn.PixelShuffle(scale))
|
142 |
+
|
143 |
+
if act is not None:
|
144 |
+
m.append(act)
|
145 |
+
|
146 |
+
self.body = nn.Sequential(*m)
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
out = self.body(x)
|
150 |
+
return out
|
151 |
+
|
152 |
+
class discrim_block(nn.Module):
|
153 |
+
def __init__(self, in_feats, out_feats, kernel_size, act = nn.LeakyReLU(inplace = True)):
|
154 |
+
super(discrim_block, self).__init__()
|
155 |
+
m = []
|
156 |
+
m.append(conv(in_feats, out_feats, kernel_size, BN = True, act = act))
|
157 |
+
m.append(conv(out_feats, out_feats, kernel_size, BN = True, act = act, stride = 2))
|
158 |
+
self.body = nn.Sequential(*m)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
out = self.body(x)
|
162 |
+
return out
|
163 |
+
|
164 |
+
|
165 |
+
class TinySRGAN(nn.Module):
|
166 |
+
|
167 |
+
def __init__(self, img_feat = 3, n_feats = 32, kernel_size = 3, num_block = 6, act = nn.PReLU(), scale=4):
|
168 |
+
super(TinySRGAN, self).__init__()
|
169 |
+
|
170 |
+
self.conv01 = conv(in_channel = img_feat, out_channel = n_feats, kernel_size = 9, BN = False, act = act)
|
171 |
+
|
172 |
+
resblocks = [ResBlock(channels = n_feats, kernel_size = 3, act = act) for _ in range(num_block)]
|
173 |
+
self.body = nn.Sequential(*resblocks)
|
174 |
+
|
175 |
+
self.conv02 = conv(in_channel = n_feats, out_channel = n_feats, kernel_size = 3, BN = True, act = None)
|
176 |
+
|
177 |
+
if(scale == 4):
|
178 |
+
upsample_blocks = [Upsampler(channel = n_feats, kernel_size = 3, scale = 2, act = act) for _ in range(2)]
|
179 |
+
else:
|
180 |
+
upsample_blocks = [Upsampler(channel = n_feats, kernel_size = 3, scale = scale, act = act)]
|
181 |
+
|
182 |
+
self.tail = nn.Sequential(*upsample_blocks)
|
183 |
+
|
184 |
+
self.last_conv = conv(in_channel = n_feats, out_channel = img_feat, kernel_size = 3, BN = False, act = nn.Tanh())
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
|
188 |
+
x = self.conv01(x)
|
189 |
+
_skip_connection = x
|
190 |
+
|
191 |
+
x = self.body(x)
|
192 |
+
x = self.conv02(x)
|
193 |
+
feat = x + _skip_connection
|
194 |
+
|
195 |
+
x = self.tail(feat)
|
196 |
+
x = self.last_conv(x)
|
197 |
+
|
198 |
+
return x, feat
|
199 |
+
|
200 |
+
|
201 |
+
def build_generator():
|
202 |
+
|
203 |
+
class ResidualBlock(nn.Module):
|
204 |
+
def __init__(self, in_channels, out_channels, expansion=6, stride=1, alpha=1.0):
|
205 |
+
super(ResidualBlock, self).__init__()
|
206 |
+
self.expansion = expansion
|
207 |
+
self.stride = stride
|
208 |
+
self.in_channels = in_channels
|
209 |
+
self.out_channels = int(out_channels * alpha)
|
210 |
+
self.pointwise_conv_filters = self._make_divisible(self.out_channels, 8)
|
211 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels * expansion, kernel_size=1, stride=1, padding=0, bias=True)
|
212 |
+
self.bn1 = nn.BatchNorm2d(in_channels * expansion)
|
213 |
+
self.conv2 = nn.Conv2d(in_channels * expansion, in_channels * expansion, kernel_size=3, stride=stride, padding=1, groups=in_channels * expansion, bias=True)
|
214 |
+
self.bn2 = nn.BatchNorm2d(in_channels * expansion)
|
215 |
+
self.conv3 = nn.Conv2d(in_channels * expansion, self.pointwise_conv_filters, kernel_size=1, stride=1, padding=0, bias=True)
|
216 |
+
self.bn3 = nn.BatchNorm2d(self.pointwise_conv_filters)
|
217 |
+
self.relu = nn.ReLU(inplace=True)
|
218 |
+
self.skip_add = (stride == 1 and in_channels == self.pointwise_conv_filters)
|
219 |
+
|
220 |
+
def forward(self, x):
|
221 |
+
identity = x
|
222 |
+
|
223 |
+
out = self.conv1(x)
|
224 |
+
out = self.bn1(out)
|
225 |
+
out = self.relu(out)
|
226 |
+
|
227 |
+
out = self.conv2(out)
|
228 |
+
out = self.bn2(out)
|
229 |
+
out = self.relu(out)
|
230 |
+
|
231 |
+
out = self.conv3(out)
|
232 |
+
out = self.bn3(out)
|
233 |
+
|
234 |
+
if self.skip_add:
|
235 |
+
out = out + identity
|
236 |
+
|
237 |
+
return out
|
238 |
+
|
239 |
+
@staticmethod
|
240 |
+
def _make_divisible(v, divisor, min_value=None):
|
241 |
+
if min_value is None:
|
242 |
+
min_value = divisor
|
243 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
244 |
+
if new_v < 0.9 * v:
|
245 |
+
new_v += divisor
|
246 |
+
return new_v
|
247 |
+
|
248 |
+
class Generator(nn.Module):
|
249 |
+
def __init__(self, in_channels, num_residual_blocks, gf):
|
250 |
+
super(Generator, self).__init__()
|
251 |
+
self.num_residual_blocks = num_residual_blocks
|
252 |
+
self.gf = gf
|
253 |
+
|
254 |
+
self.conv1 = nn.Conv2d(in_channels, gf, kernel_size=3, stride=1, padding=1)
|
255 |
+
self.bn1 = nn.BatchNorm2d(gf)
|
256 |
+
self.prelu1 = nn.PReLU()
|
257 |
+
|
258 |
+
self.residual_blocks = self.make_layer(ResidualBlock, gf, num_residual_blocks)
|
259 |
+
|
260 |
+
self.conv2 = nn.Conv2d(gf, gf, kernel_size=3, stride=1, padding=1)
|
261 |
+
self.bn2 = nn.BatchNorm2d(gf)
|
262 |
+
|
263 |
+
self.upsample1 = nn.Sequential(
|
264 |
+
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
265 |
+
nn.Conv2d(gf, gf, kernel_size=3, stride=1, padding=1),
|
266 |
+
nn.PReLU()
|
267 |
+
)
|
268 |
+
|
269 |
+
self.upsample2 = nn.Sequential(
|
270 |
+
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
271 |
+
nn.Conv2d(gf, gf, kernel_size=3, stride=1, padding=1),
|
272 |
+
nn.PReLU()
|
273 |
+
)
|
274 |
+
|
275 |
+
self.conv3 = nn.Conv2d(gf, 3, kernel_size=3, stride=1, padding=1)
|
276 |
+
self.tanh = nn.Tanh()
|
277 |
+
|
278 |
+
def make_layer(self, block, out_channels, blocks):
|
279 |
+
layers = []
|
280 |
+
for _ in range(blocks):
|
281 |
+
layers.append(block(out_channels, out_channels))
|
282 |
+
return nn.Sequential(*layers)
|
283 |
+
|
284 |
+
def forward(self, x):
|
285 |
+
out1 = self.prelu1(self.bn1(self.conv1(x)))
|
286 |
+
out = self.residual_blocks(out1)
|
287 |
+
out = self.bn2(self.conv2(out))
|
288 |
+
out = out + out1
|
289 |
+
out = self.upsample1(out)
|
290 |
+
out = self.upsample2(out)
|
291 |
+
out = self.tanh(self.conv3(out))
|
292 |
+
return out
|
293 |
+
|
294 |
+
return Generator(3, 6, 32)
|
295 |
+
|
296 |
+
|
297 |
+
def numpify(imgs):
|
298 |
+
all_images = []
|
299 |
+
for img in imgs:
|
300 |
+
img = img.permute(1,2,0).to('cpu') ### MIGHT CRASH HERE
|
301 |
+
all_images.append(img)
|
302 |
+
return np.stack(all_images, axis=0)
|
303 |
+
|
304 |
+
transform = transforms.Compose([
|
305 |
+
transforms.ToTensor()
|
306 |
+
])
|
307 |
+
|
308 |
+
|
309 |
+
# Function to translate the image
|
310 |
+
def translate_image(image, sharpen, model_name, save):
|
311 |
+
print('Translating!')
|
312 |
+
|
313 |
+
desired_width = 480
|
314 |
+
|
315 |
+
original_width, original_height = image.size
|
316 |
+
desired_height = int((original_height / original_width) * desired_width)
|
317 |
+
|
318 |
+
resized_image = image.resize((desired_width, desired_height))
|
319 |
+
|
320 |
+
if(model_name=='MobileSR'):
|
321 |
+
|
322 |
+
model=build_generator().to(device)
|
323 |
+
model.load_state_dict(torch.load('./weights/mobile_sr.pt'))
|
324 |
+
|
325 |
+
low_res = transform(resized_image)
|
326 |
+
low_res = low_res.unsqueeze(dim=0).to(device)
|
327 |
+
model.eval()
|
328 |
+
with torch.no_grad():
|
329 |
+
sr = model(low_res)
|
330 |
+
|
331 |
+
fake_imgs = numpify(sr)
|
332 |
+
|
333 |
+
sr_img = Image.fromarray((((fake_imgs[0] + 1) / 2) * 255).astype(np.uint8))
|
334 |
+
|
335 |
+
elif(model_name=='MiniSRGAN'):
|
336 |
+
model = MiniSRGAN().to(device)
|
337 |
+
model.load_state_dict(torch.load('./weights/miniSRGAN.pt'))
|
338 |
+
model.eval()
|
339 |
+
|
340 |
+
inputs = np.array(resized_image)
|
341 |
+
inputs = (inputs / 127.5) - 1.0
|
342 |
+
inputs = torch.tensor(inputs.transpose(2, 0, 1).astype(np.float32)).to(device)
|
343 |
+
|
344 |
+
with torch.no_grad():
|
345 |
+
output, _ = model(torch.unsqueeze(inputs,dim=0))
|
346 |
+
output = output[0].cpu().numpy()
|
347 |
+
output = np.clip(output, -1.0, 1.0)
|
348 |
+
output = (output + 1.0) / 2.0
|
349 |
+
output = output.transpose(1, 2, 0)
|
350 |
+
sr_img = Image.fromarray((output * 255.0).astype(np.uint8))
|
351 |
+
|
352 |
+
elif(model_name=='TinySRGAN'):
|
353 |
+
model = TinySRGAN().to(device)
|
354 |
+
model.load_state_dict(torch.load('./weights/tinySRGAN.pt'))
|
355 |
+
|
356 |
+
inputs = np.array(resized_image)
|
357 |
+
inputs = (inputs / 127.5) - 1.0
|
358 |
+
inputs = torch.tensor(inputs.transpose(2, 0, 1).astype(np.float32)).to(device)
|
359 |
+
model.eval()
|
360 |
+
|
361 |
+
with torch.no_grad():
|
362 |
+
output, _ = model(torch.unsqueeze(inputs,dim=0))
|
363 |
+
output = output[0].cpu().numpy()
|
364 |
+
output = (output + 1.0) / 2.0
|
365 |
+
output = output.transpose(1, 2, 0)
|
366 |
+
sr_img = Image.fromarray((output * 255.0).astype(np.uint8))
|
367 |
+
|
368 |
+
if sharpen:
|
369 |
+
sr_img_cv = np.array(sr_img)
|
370 |
+
sr_img_cv = cv2.cvtColor(sr_img_cv, cv2.COLOR_RGB2BGR)
|
371 |
+
|
372 |
+
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
|
373 |
+
sharpened_sr_img_cv = cv2.filter2D(sr_img_cv, -1, kernel)
|
374 |
+
|
375 |
+
sharpened_sr_img = Image.fromarray(cv2.cvtColor(sharpened_sr_img_cv, cv2.COLOR_BGR2RGB))
|
376 |
+
|
377 |
+
if(save=="True"):
|
378 |
+
sharpened_sr_img.save('super_resolved_image.png')
|
379 |
+
|
380 |
+
return sharpened_sr_img
|
381 |
+
else:
|
382 |
+
|
383 |
+
if(save=="True"):
|
384 |
+
sr_img.save('super_resolved_image.png')
|
385 |
+
|
386 |
+
return sr_img
|
387 |
+
|
388 |
+
|
389 |
+
# Gradio interface
|
390 |
+
interface = gr.Interface(
|
391 |
+
fn=model2_inf,
|
392 |
+
inputs=gr.Image(type="numpy"),
|
393 |
+
outputs=[gr.Textbox(label="Result"), gr.Image(label="Processed Image")],
|
394 |
+
title="Pixelation Detection App",
|
395 |
+
description="Upload an image to check if it is pixelated. If the image is pixelated, the processed image will be displayed.",
|
396 |
+
allow_flagging='never'
|
397 |
+
)
|
398 |
+
|
399 |
+
interface.launch()
|
400 |
+
# Launch the Gradio app
|
401 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.32.2
|
2 |
+
torch==2.1.0
|
3 |
+
torchvision==0.16.0
|
4 |
+
pillow==10.0.1
|
5 |
+
numpy==1.26.0
|
6 |
+
opencv-python==4.9.0.80
|
7 |
+
scikit-learn==1.3.2
|
8 |
+
matplotlib==3.8.2
|
9 |
+
tqdm==4.66.1
|
10 |
+
timm==0.9.12
|
11 |
+
super_image==0.1.7
|
12 |
+
|
weights/SRGAN.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13f8c4779fb4e0d9b6e56e460fe6df81870ac388e6db20926b2aa9f2fd49bb61
|
3 |
+
size 6209971
|
weights/fsrcnn_x4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c15150d6787d487f38a68e66be5ec8a964182403af494e6a935fa03eeb56a630
|
3 |
+
size 54998
|
weights/method1(0.668).pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8df654bb1bb5c4dad3a6aa3251236cf2cf86957b62e3363c66b8e3438a41e70d
|
3 |
+
size 6214802
|
weights/method2(0.960).pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af08d7011d16d43cdf5bacf03dcd12723f26464013571e597a6160dff2081c65
|
3 |
+
size 6214802
|
weights/miniSRGAN.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36c68e89673cb8858629133f0aa95f21926382cb82d69f19f8b840866226031e
|
3 |
+
size 3827430
|
weights/miniSRResNET.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a00e5ef9b5b029293e1804d358e1697ef81e0a70bb4c52a96274a1498fe8c2a9
|
3 |
+
size 3828022
|
weights/mobile_sr.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63ccbec678b30e8d1c25523413928dd2d1d9229519ceae107ae9fc80571d89ba
|
3 |
+
size 556457
|
weights/tinySRGAN.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e873fd2427142c84278466802fc250607713c51c2671f289b48a82d1979b59f
|
3 |
+
size 855730
|