Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import sys | |
import os | |
import tqdm | |
sys.path.append(os.path.abspath(os.path.join("", ".."))) | |
import torch | |
import gc | |
import warnings | |
warnings.filterwarnings("ignore") | |
from PIL import Image | |
from utils import load_models, save_model_w2w, save_model_for_diffusers | |
from sampling import sample_weights | |
from huggingface_hub import snapshot_download | |
global device | |
global generator | |
global unet | |
global vae | |
global text_encoder | |
global tokenizer | |
global noise_scheduler | |
device = "cuda:0" | |
generator = torch.Generator(device=device) | |
models_path = snapshot_download(repo_id="Snapchat/w2w") | |
mean = torch.load(f"{models_path}/mean.pt").bfloat16().to(device) | |
std = torch.load(f"{models_path}/std.pt").bfloat16().to(device) | |
v = torch.load(f"{models_path}/V.pt").bfloat16().to(device) | |
proj = torch.load(f"{models_path}/proj_1000pc.pt").bfloat16().to(device) | |
df = torch.load(f"{models_path}/identity_df.pt") | |
weight_dimensions = torch.load(f"{models_path}/weight_dimensions.pt") | |
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device) | |
global network | |
def sample_model(): | |
global unet | |
del unet | |
global network | |
unet, _, _, _, _ = load_models(device) | |
network = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00) | |
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed): | |
global device | |
global generator | |
global unet | |
global vae | |
global text_encoder | |
global tokenizer | |
global noise_scheduler | |
generator = generator.manual_seed(seed) | |
latents = torch.randn( | |
(1, unet.in_channels, 512 // 8, 512 // 8), | |
generator = generator, | |
device = device | |
).bfloat16() | |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
text_embeddings = text_encoder(text_input.input_ids.to(device))[0] | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
noise_scheduler.set_timesteps(ddim_steps) | |
latents = latents * noise_scheduler.init_noise_sigma | |
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)): | |
latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t) | |
with network: | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample | |
#guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample | |
latents = 1 / 0.18215 * latents | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0] | |
image = Image.fromarray((image * 255).round().astype("uint8")) | |
return [image] | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# <em>weights2weights</em> Demo") | |
with gr.Row(): | |
with gr.Column(): | |
files = gr.Files( | |
label="Upload a photo of your face to invert, or sample a new model", | |
file_types=["image"] | |
) | |
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125) | |
sample = gr.Button("Sample New Model") | |
with gr.Column(visible=False) as clear_button: | |
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm") | |
prompt = gr.Textbox(label="Prompt", | |
info="Make sure to include 'sks person'" , | |
placeholder="sks person", | |
value="sks person") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, cartoon", value="low quality, blurry, unfinished, cartoon") | |
seed = gr.Number(value=5, precision=0, label="Seed", interactive=True) | |
cfg = gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True) | |
steps = gr.Slider(label="Inference Steps", precision=0, value=50, step=1, minimum=0, maximum=100, interactive=True) | |
submit = gr.Button("Submit") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated Images") | |
sample.click(fn=sample_model) | |
submit.click(fn=inference, | |
inputs=[prompt, negative_prompt, cfg, steps, seed], | |
outputs=gallery) | |
demo.launch(share=True) |