{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "workding dir: /Users/inflaton/code/engd/papers/maritime/global-incidents\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "\n", "import os\n", "import sys\n", "from pathlib import Path\n", "\n", "# check if workding_dir is in local variables\n", "if \"workding_dir\" not in locals():\n", " workding_dir = str(Path.cwd().parent)\n", "\n", "os.chdir(workding_dir)\n", "sys.path.append(workding_dir)\n", "print(\"workding dir:\", workding_dir)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 5782 entries, 0 to 5781\n", "Data columns (total 46 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Unnamed: 0 5780 non-null float64\n", " 1 Index 5780 non-null float64\n", " 2 Unnamed: 0.1 5780 non-null float64\n", " 3 Headline 5781 non-null object \n", " 4 Details 5781 non-null object \n", " 5 Severity 5780 non-null object \n", " 6 Category 5780 non-null object \n", " 7 Region 5780 non-null object \n", " 8 Datetime 5780 non-null object \n", " 9 Year 5781 non-null float64\n", " 10 lat 3882 non-null float64\n", " 11 lon 3882 non-null float64\n", " 12 Headline_Description 5781 non-null object \n", " 13 found_words 5781 non-null object \n", " 14 maritime_label 5781 non-null object \n", " 15 found_words2 5781 non-null object \n", " 16 maritime_label2 5781 non-null object \n", " 17 found_words3 5781 non-null object \n", " 18 maritime_label3 5782 non-null bool \n", " 19 all_found_words 5782 non-null object \n", " 20 banned_words_but_still_maritime 5782 non-null object \n", " 21 found_ports 5778 non-null object \n", " 22 contains_port_info 5778 non-null float64\n", " 23 Original Category 3073 non-null object \n", " 24 Category 1 3073 non-null object \n", " 25 Category 2 637 non-null object \n", " 26 Category 3 106 non-null object \n", " 27 Category 4 1 non-null object \n", " 28 Category 5 0 non-null float64\n", " 29 VD 3073 non-null float64\n", " 30 VA 3073 non-null float64\n", " 31 MPT 3073 non-null float64\n", " 32 PC 3073 non-null float64\n", " 33 PDC 3073 non-null float64\n", " 34 PCA 3073 non-null float64\n", " 35 CDL 3073 non-null float64\n", " 36 IT 3073 non-null float64\n", " 37 EP 3073 non-null float64\n", " 38 NEW 3073 non-null float64\n", " 39 CSD 3073 non-null float64\n", " 40 RPE 3073 non-null float64\n", " 41 MN 3073 non-null float64\n", " 42 NM 3073 non-null float64\n", " 43 if_labeled 5778 non-null object \n", " 44 Month 5778 non-null float64\n", " 45 Week 5778 non-null float64\n", "dtypes: bool(1), float64(24), object(21)\n", "memory usage: 2.0+ MB\n" ] } ], "source": [ "# First, load the uploaded CSV file \n", "import pandas as pd\n", "data_path = 'data/all_port_labelled.csv'\n", "data = pd.read_csv(data_path)\n", "\n", "# Display the first few rows of the dataframe and its summary statistics to get an initial understanding\n", "data_head = data.head()\n", "data_info = data.info()\n", "data_description = data.describe(include='all')\n", "\n", "data_info\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0IndexUnnamed: 0.1HeadlineDetailsSeverityCategoryRegionDatetimeYear...ITEPNEWCSDRPEMNNMif_labeledMonthWeek
count5780.0000005780.0000005780.0000005781578157805780578057805781.000000...3073.0000003073.0000003073.0000003073.0000003073.0000003073.0000003073.00000057785778.0000005778.000000
uniqueNaNNaNNaN5683575148571115725NaN...NaNNaNNaNNaNNaNNaNNaN2NaNNaN
topNaNNaNNaNNo congestion at Port of ManilaUpdated media sources indicated on December 4 ...ModeratePort CongestionChina12/6/20 14:40NaN...NaNNaNNaNNaNNaNNaNNaNFalseNaNNaN
freqNaNNaNNaN6328407108203NaN...NaNNaNNaNNaNNaNNaNNaN3073NaNNaN
mean2889.50000015762.303287113709.500865NaNNaNNaNNaNNaNNaN2018.935997...0.0712660.0087860.1981780.0078100.0344940.0618290.295802NaN7.03738328.965386
std1668.6866099078.05267872963.703513NaNNaNNaNNaNNaNNaN26.568532...0.2573100.0933370.3986920.0880430.1825240.2408840.456477NaN3.55617015.615540
min0.0000008.00000034.000000NaNNaNNaNNaNNaNNaN0.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN1.0000001.000000
25%1444.7500008397.00000050904.500000NaNNaNNaNNaNNaNNaN2019.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN4.00000014.000000
50%2889.50000015128.500000101580.500000NaNNaNNaNNaNNaNNaN2019.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN8.00000033.000000
75%4334.25000021700.750000157966.750000NaNNaNNaNNaNNaNNaN2020.000000...0.0000000.0000000.0000000.0000000.0000000.0000001.000000NaN10.00000043.000000
max5779.00000035421.000000299524.000000NaNNaNNaNNaNNaNNaN2020.000000...1.0000001.0000001.0000001.0000001.0000001.0000001.000000NaN12.00000053.000000
\n", "

11 rows × 46 columns

\n", "
" ], "text/plain": [ " Unnamed: 0 Index Unnamed: 0.1 \\\n", "count 5780.000000 5780.000000 5780.000000 \n", "unique NaN NaN NaN \n", "top NaN NaN NaN \n", "freq NaN NaN NaN \n", "mean 2889.500000 15762.303287 113709.500865 \n", "std 1668.686609 9078.052678 72963.703513 \n", "min 0.000000 8.000000 34.000000 \n", "25% 1444.750000 8397.000000 50904.500000 \n", "50% 2889.500000 15128.500000 101580.500000 \n", "75% 4334.250000 21700.750000 157966.750000 \n", "max 5779.000000 35421.000000 299524.000000 \n", "\n", " Headline \\\n", "count 5781 \n", "unique 5683 \n", "top No congestion at Port of Manila \n", "freq 6 \n", "mean NaN \n", "std NaN \n", "min NaN \n", "25% NaN \n", "50% NaN \n", "75% NaN \n", "max NaN \n", "\n", " Details Severity \\\n", "count 5781 5780 \n", "unique 5751 4 \n", "top Updated media sources indicated on December 4 ... Moderate \n", "freq 3 2840 \n", "mean NaN NaN \n", "std NaN NaN \n", "min NaN NaN \n", "25% NaN NaN \n", "50% NaN NaN \n", "75% NaN NaN \n", "max NaN NaN \n", "\n", " Category Region Datetime Year ... IT \\\n", "count 5780 5780 5780 5781.000000 ... 3073.000000 \n", "unique 857 111 5725 NaN ... NaN \n", "top Port Congestion China 12/6/20 14:40 NaN ... NaN \n", "freq 710 820 3 NaN ... NaN \n", "mean NaN NaN NaN 2018.935997 ... 0.071266 \n", "std NaN NaN NaN 26.568532 ... 0.257310 \n", "min NaN NaN NaN 0.000000 ... 0.000000 \n", "25% NaN NaN NaN 2019.000000 ... 0.000000 \n", "50% NaN NaN NaN 2019.000000 ... 0.000000 \n", "75% NaN NaN NaN 2020.000000 ... 0.000000 \n", "max NaN NaN NaN 2020.000000 ... 1.000000 \n", "\n", " EP NEW CSD RPE MN \\\n", "count 3073.000000 3073.000000 3073.000000 3073.000000 3073.000000 \n", "unique NaN NaN NaN NaN NaN \n", "top NaN NaN NaN NaN NaN \n", "freq NaN NaN NaN NaN NaN \n", "mean 0.008786 0.198178 0.007810 0.034494 0.061829 \n", "std 0.093337 0.398692 0.088043 0.182524 0.240884 \n", "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "50% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "75% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "max 1.000000 1.000000 1.000000 1.000000 1.000000 \n", "\n", " NM if_labeled Month Week \n", "count 3073.000000 5778 5778.000000 5778.000000 \n", "unique NaN 2 NaN NaN \n", "top NaN False NaN NaN \n", "freq NaN 3073 NaN NaN \n", "mean 0.295802 NaN 7.037383 28.965386 \n", "std 0.456477 NaN 3.556170 15.615540 \n", "min 0.000000 NaN 1.000000 1.000000 \n", "25% 0.000000 NaN 4.000000 14.000000 \n", "50% 0.000000 NaN 8.000000 33.000000 \n", "75% 1.000000 NaN 10.000000 43.000000 \n", "max 1.000000 NaN 12.000000 53.000000 \n", "\n", "[11 rows x 46 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_description" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Missing ValuesPercentage (%)
Category 55782100.000000
Category 4578199.982705
Category 3567698.166724
Category 2514588.983051
Category 1270946.852300
VD270946.852300
VA270946.852300
MPT270946.852300
PC270946.852300
PDC270946.852300
PCA270946.852300
CDL270946.852300
Original Category270946.852300
EP270946.852300
NEW270946.852300
CSD270946.852300
RPE270946.852300
MN270946.852300
NM270946.852300
IT270946.852300
lon190032.860602
lat190032.860602
if_labeled40.069180
Month40.069180
Week40.069180
contains_port_info40.069180
found_ports40.069180
Index20.034590
Unnamed: 0.120.034590
Severity20.034590
Category20.034590
Region20.034590
Datetime20.034590
Unnamed: 020.034590
maritime_label10.017295
found_words210.017295
Headline_Description10.017295
Year10.017295
maritime_label210.017295
found_words310.017295
Details10.017295
Headline10.017295
found_words10.017295
maritime_label300.000000
all_found_words00.000000
banned_words_but_still_maritime00.000000
\n", "
" ], "text/plain": [ " Missing Values Percentage (%)\n", "Category 5 5782 100.000000\n", "Category 4 5781 99.982705\n", "Category 3 5676 98.166724\n", "Category 2 5145 88.983051\n", "Category 1 2709 46.852300\n", "VD 2709 46.852300\n", "VA 2709 46.852300\n", "MPT 2709 46.852300\n", "PC 2709 46.852300\n", "PDC 2709 46.852300\n", "PCA 2709 46.852300\n", "CDL 2709 46.852300\n", "Original Category 2709 46.852300\n", "EP 2709 46.852300\n", "NEW 2709 46.852300\n", "CSD 2709 46.852300\n", "RPE 2709 46.852300\n", "MN 2709 46.852300\n", "NM 2709 46.852300\n", "IT 2709 46.852300\n", "lon 1900 32.860602\n", "lat 1900 32.860602\n", "if_labeled 4 0.069180\n", "Month 4 0.069180\n", "Week 4 0.069180\n", "contains_port_info 4 0.069180\n", "found_ports 4 0.069180\n", "Index 2 0.034590\n", "Unnamed: 0.1 2 0.034590\n", "Severity 2 0.034590\n", "Category 2 0.034590\n", "Region 2 0.034590\n", "Datetime 2 0.034590\n", "Unnamed: 0 2 0.034590\n", "maritime_label 1 0.017295\n", "found_words2 1 0.017295\n", "Headline_Description 1 0.017295\n", "Year 1 0.017295\n", "maritime_label2 1 0.017295\n", "found_words3 1 0.017295\n", "Details 1 0.017295\n", "Headline 1 0.017295\n", "found_words 1 0.017295\n", "maritime_label3 0 0.000000\n", "all_found_words 0 0.000000\n", "banned_words_but_still_maritime 0 0.000000" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Calculate missing values count and percentage for each column\n", "missing_values_count = data.isnull().sum()\n", "missing_values_percentage = (missing_values_count / len(data)) * 100\n", "\n", "# Combine count and percentage into a dataframe for easier reading\n", "missing_values_df = pd.DataFrame({\n", " 'Missing Values': missing_values_count,\n", " 'Percentage (%)': missing_values_percentage\n", "})\n", "\n", "missing_values_df.sort_values(by='Missing Values', ascending=False)\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['Unnamed: 0', 'Index', 'Unnamed: 0.1', 'Headline', 'Details',\n", " 'Severity', 'Category', 'Region', 'Datetime', 'Year', 'lat', 'lon',\n", " 'Headline_Description', 'found_words', 'maritime_label', 'found_words2',\n", " 'maritime_label2', 'found_words3', 'maritime_label3', 'all_found_words',\n", " 'banned_words_but_still_maritime', 'found_ports', 'contains_port_info',\n", " 'if_labeled', 'Month', 'Week'],\n", " dtype='object')\n" ] } ], "source": [ "columns_to_keep = ['lat', 'lon']\n", "columns_to_drop = missing_values_percentage[(missing_values_percentage > 30) & (~missing_values_percentage.index.isin(columns_to_keep))].index\n", "\n", "# Now drop the columns except for the ones we want to keep\n", "data_cleaned = data.drop(columns=columns_to_drop)\n", "\n", "# Display the columns remaining after dropping\n", "print(data_cleaned.columns)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Drop the specified columns\n", "data_cleaned = data_cleaned.drop(\n", " columns=[\n", " \"Unnamed: 0\",\n", " \"Index\",\n", " \"Unnamed: 0.1\",\n", " \"Headline_Description\",\n", " \"found_words\",\n", " \"found_words2\",\n", " \"maritime_label2\",\n", " \"found_words3\",\n", " \"maritime_label3\",\n", " \"all_found_words\",\n", " \"banned_words_but_still_maritime\",\n", " ]\n", ")\n", "\n", "# Create a new 'id' column starting from 1\n", "data_cleaned['id'] = range(1, len(data_cleaned) + 1)\n", "\n", "# Optionally, if you want 'id' to be the first column, you can rearrange the columns like this:\n", "cols = ['id'] + [col for col in data_cleaned.columns if col != 'id']\n", "data_cleaned = data_cleaned[cols]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "data_cleaned[\"maritime_label\"] = data_cleaned[\"maritime_label\"].apply(\n", " lambda x: x if pd.isna(x) else x == \"TRUE\"\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "data_cleaned['Headline_Details'] = data_cleaned['Headline'] + \" \" + data_cleaned['Details']\n", "\n", "# Now, the DataFrame `data_cleaned` has a new column 'Headline_Details' combining the texts" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "data_cleaned.to_csv(\"data/cleaned_data-1.csv\", index=False)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idHeadlineDetailsSeverityCategoryRegionDatetimeYearlatlonmaritime_labelfound_portscontains_port_infoif_labeledMonthWeekHeadline_Details
01Grasberg Mine- Grasberg mine workers extend st...Media sources indicate that workers at the Gra...ModerateMine Workers StrikeIndonesia28/5/17 17:082017.0-4.05608137.11302False['freeport']1.0False5.021.0Grasberg Mine- Grasberg mine workers extend st...
12Indonesia: Undersea internet cables damaged by...News sources are stating that recent typhoons ...MinorTravel WarningIndonesia4/9/17 14:302017.0NaNNaNFalse['hong kong']1.0False4.014.0Indonesia: Undersea internet cables damaged by...
23Shanghai port congestion impacts terminals in ...The persisting port congestion at Shanghai’s Y...MinorPort CongestionChina27/4/17 9:162017.029.52000121.33190True['ningbo', 'qingdao', 'shanghai']1.0False4.017.0Shanghai port congestion impacts terminals in ...
34UPDATE - Indonesia: Explosion at KP Terminal i...Updated local media sources from Jakarta indic...ExtremeBombing, Police OperationsIndonesia24/5/17 15:152017.0-6.22465106.86700True['jakarta']1.0False5.021.0UPDATE - Indonesia: Explosion at KP Terminal i...
45UPDATE - Indonesia: Police confirm two explosi...According to local police in Jakarta, two expl...ExtremeBombing, Police OperationsIndonesia24/5/17 16:202017.0NaNNaNTrue['jakarta']1.0True5.021.0UPDATE - Indonesia: Police confirm two explosi...
\n", "
" ], "text/plain": [ " id Headline \\\n", "0 1 Grasberg Mine- Grasberg mine workers extend st... \n", "1 2 Indonesia: Undersea internet cables damaged by... \n", "2 3 Shanghai port congestion impacts terminals in ... \n", "3 4 UPDATE - Indonesia: Explosion at KP Terminal i... \n", "4 5 UPDATE - Indonesia: Police confirm two explosi... \n", "\n", " Details Severity \\\n", "0 Media sources indicate that workers at the Gra... Moderate \n", "1 News sources are stating that recent typhoons ... Minor \n", "2 The persisting port congestion at Shanghai’s Y... Minor \n", "3 Updated local media sources from Jakarta indic... Extreme \n", "4 According to local police in Jakarta, two expl... Extreme \n", "\n", " Category Region Datetime Year lat \\\n", "0 Mine Workers Strike Indonesia 28/5/17 17:08 2017.0 -4.05608 \n", "1 Travel Warning Indonesia 4/9/17 14:30 2017.0 NaN \n", "2 Port Congestion China 27/4/17 9:16 2017.0 29.52000 \n", "3 Bombing, Police Operations Indonesia 24/5/17 15:15 2017.0 -6.22465 \n", "4 Bombing, Police Operations Indonesia 24/5/17 16:20 2017.0 NaN \n", "\n", " lon maritime_label found_ports \\\n", "0 137.11302 False ['freeport'] \n", "1 NaN False ['hong kong'] \n", "2 121.33190 True ['ningbo', 'qingdao', 'shanghai'] \n", "3 106.86700 True ['jakarta'] \n", "4 NaN True ['jakarta'] \n", "\n", " contains_port_info if_labeled Month Week \\\n", "0 1.0 False 5.0 21.0 \n", "1 1.0 False 4.0 14.0 \n", "2 1.0 False 4.0 17.0 \n", "3 1.0 False 5.0 21.0 \n", "4 1.0 True 5.0 21.0 \n", "\n", " Headline_Details \n", "0 Grasberg Mine- Grasberg mine workers extend st... \n", "1 Indonesia: Undersea internet cables damaged by... \n", "2 Shanghai port congestion impacts terminals in ... \n", "3 UPDATE - Indonesia: Explosion at KP Terminal i... \n", "4 UPDATE - Indonesia: Police confirm two explosi... " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"data/cleaned_data.csv\")\n", "# Set 'id' column to index + 1\n", "df[\"id\"] = data_cleaned.index + 1\n", "\n", "# Display the updated DataFrame\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "df.to_csv(\"data/cleaned_data-2.csv\", index=False)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of original DataFrame: (5782, 17)\n", "Shape of cleaned DataFrame: (5782, 17)\n", "\n", "Columns in original DataFrame: ['id', 'Headline', 'Details', 'Severity', 'Category', 'Region', 'Datetime', 'Year', 'lat', 'lon', 'maritime_label', 'found_ports', 'contains_port_info', 'if_labeled', 'Month', 'Week', 'Headline_Details']\n", "Columns in cleaned DataFrame: ['id', 'Headline', 'Details', 'Severity', 'Category', 'Region', 'Datetime', 'Year', 'lat', 'lon', 'maritime_label', 'found_ports', 'contains_port_info', 'if_labeled', 'Month', 'Week', 'Headline_Details']\n", "\n", "Differences in 'Headline' column:\n", " self other\n", "5079 NaN Regulatory Advisory\n", "\n", "Differences in 'Details' column:\n", " self other\n", "5079 NaN NM\n", "\n", "Differences in 'Severity' column:\n", " self other\n", "5079 FALSE NaN\n", "5081 TRUE NaN\n", "\n", "Differences in 'Category' column:\n", " self other\n", "5079 7 NaN\n", "5081 11 NaN\n", "\n", "Differences in 'Region' column:\n", " self other\n", "5079 28 NaN\n", "5081 48 NaN\n", "\n", "Differences in 'Datetime' column:\n", " self other\n", "5079 Daily COVID-19 roundup: Serum Institute sets p... NaN\n", "5081 Daily COVID-19 roundup: US’s COVAXX enters USD... NaN\n", "\n", "Differences in 'Year' column:\n", " self other\n", "5079 NaN 0.0\n", "\n", "Differences in 'lat' column:\n", " self other\n", "5079 NaN 0.0\n", "\n", "Differences in 'lon' column:\n", " self other\n", "5079 NaN 0.0\n", "\n", "Differences in 'maritime_label' column:\n", " self other\n", "5079 NaN False\n", "\n", "Differences in 'Headline_Details' column:\n", " self other\n", "5078 NaN Daily COVID-19 roundup: Serum Institute sets p...\n", "5079 NaN Regulatory Advisory NM\n", "5080 NaN Daily COVID-19 roundup: US’s COVAXX enters USD...\n" ] } ], "source": [ "# 1. Compare shapes\n", "print(\"Shape of original DataFrame:\", df.shape)\n", "print(\"Shape of cleaned DataFrame:\", data_cleaned.shape)\n", "\n", "# 2. Compare columns\n", "print(\"\\nColumns in original DataFrame:\", df.columns.tolist())\n", "print(\"Columns in cleaned DataFrame:\", data_cleaned.columns.tolist())\n", "\n", "# # 3. Compare data\n", "# # Find rows that are in df but not in data_cleaned\n", "# diff_df_to_cleaned = pd.concat([df, data_cleaned]).drop_duplicates(keep=False)\n", "\n", "# # Find rows that are in data_cleaned but not in df\n", "# diff_cleaned_to_df = pd.concat([data_cleaned, df]).drop_duplicates(keep=False)\n", "\n", "# print(\"\\nRows in original DataFrame but not in cleaned DataFrame:\")\n", "# print(diff_df_to_cleaned)\n", "\n", "# print(\"\\nRows in cleaned DataFrame but not in original DataFrame:\")\n", "# print(diff_cleaned_to_df)\n", "\n", "# 4. Compare specific columns (if needed)\n", "# Example: Compare a specific column 'column_name'\n", "for column in df.columns:\n", " if column in data_cleaned.columns:\n", " diff_column = df[column].compare(data_cleaned[column])\n", " if not diff_column.empty:\n", " print(\"\\nDifferences in '{}' column:\".format(column))\n", " print(diff_column)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "# data = pd.read_csv(\"data/cleaned_data.csv\")\n", "data = data_cleaned" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Use the cleaned dataset for understanding key variables " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Understanding 'Region'\n" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Region\n", "China 820\n", "United States 721\n", "Australia 378\n", "United Kingdom 346\n", "South Africa 257\n", " ... \n", "Guinea 1\n", "Nicaragua 1\n", "Norway 1\n", "Djibouti 1\n", "Lao People's Democratic Republic 1\n", "Name: count, Length: 111, dtype: int64" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Region'].value_counts()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Indonesia', 'China', 'Argentina', 'Philippines', 'United States',\n", " 'United Kingdom', 'Taiwan', 'South Africa', 'Italy', 'Spain',\n", " 'Brazil', 'France', 'Ecuador', 'Chile',\n", " 'Venezuela (Bolivarian Republic of)', 'Mexico', 'Australia',\n", " 'India', 'Singapore', 'Bangladesh', 'Greece', 'Colombia',\n", " 'Republic of Korea', 'Saudi Arabia', 'Morocco', 'Germany',\n", " 'Sri Lanka', 'Malta', 'Japan', 'Bolivia (Plurinational State of)',\n", " 'Belgium', 'Canada', 'Malaysia', 'Denmark', 'New Zealand',\n", " 'Pakistan', 'Nepal', 'Peru', 'United Arab Emirates', 'Netherlands',\n", " 'Tunisia', 'Lithuania', 'Djibouti', 'Egypt', 'Algeria', 'Russia',\n", " 'Thailand', 'Hong Kong', 'Panama', 'Viet Nam', 'Turkey', 'Brunei',\n", " 'Iran (Islamic Republic of)', 'Jamaica', 'Uganda', 'Macau', 'Oman',\n", " 'Puerto Rico', 'Costa Rica', 'Poland',\n", " 'United Republic of Tanzania', 'Bahamas, The', 'Nigeria',\n", " 'Ireland', 'Cambodia', 'Jordan', 'Sweden', 'Guinea', 'Honduras',\n", " 'Togo', 'Lebanon', 'Yemen', 'Nicaragua', 'Mozambique', 'Norway',\n", " 'Latvia', 'Qatar', 'Cuba', 'Kenya', 'Portugal', 'Uruguay', 'Iraq',\n", " 'Afghanistan', 'Israel', \"Democratic People's Republic of Korea\",\n", " 'Kuwait', 'Ghana', 'Albania', 'Libya', 'Offshore', 'El Salvador',\n", " 'Gibraltar', 'Benin', 'Georgia', 'Dominican Republic',\n", " 'Burkina Faso', 'Belarus', 'Paraguay', 'Seychelles', 'Uzbekistan',\n", " 'Austria', 'Bahrain', nan, 'Guernsey', 'Somalia',\n", " 'Trinidad and Tobago', 'Angola', 'Guatemala', 'Madagascar',\n", " 'Cayman Islands', 'Equatorial Guinea',\n", " \"Lao People's Democratic Republic\"], dtype=object)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Region'].unique()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Understanding \"Category\"" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Mine Workers Strike', 'Travel Warning', 'Port Congestion',\n", " 'Bombing, Police Operations',\n", " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory',\n", " 'Cargo/Warehouse Theft', 'Tropical Cyclone / Storm', 'Storm',\n", " 'Earthquake', 'Workplace Accident', 'Tornado', 'Industrial Action',\n", " 'Public Safety / Security', 'Maritime Accident',\n", " 'Port Disruption,Roadway Closure / Disruption',\n", " 'Roadway Closure / Disruption, Vehicle Accident, Port Disruption',\n", " 'Roadway Closure / Disruption, Cargo Disruption', 'Power Outage',\n", " 'Production Halt', 'Port Closure', 'Miscellaneous Events',\n", " 'Maritime Advisory, Port Closure',\n", " 'Typhoon, Tropical Cyclone / Storm, Port Closure, Port Disruption',\n", " 'Train Delays / Disruption', 'Maritime Advisory',\n", " 'Protest / Riot, Miscellaneous Strikes',\n", " 'Ground Transportation Advisory, Maritime Advisory',\n", " 'Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", " 'Public Transportation Disruption', 'Protest / Riot',\n", " 'Miscellaneous Strikes',\n", " 'Port Congestion, Maritime Accident, Non-industrial Fire',\n", " 'Miscellaneous Strikes, Ground Transportation Advisory',\n", " 'Weather Advisory', 'Chemical Spill',\n", " 'Roadway Closure / Disruption, Non-industrial Fire',\n", " 'Roadway Closure / Disruption, Weather Advisory',\n", " 'Roadway Closure / Disruption, Vehicle Accident',\n", " 'Port Congestion, Maritime Accident',\n", " 'Roadway Closure / Disruption, Vehicle Accident, Chemical Spill',\n", " 'Flooding, Storm, Weather Advisory',\n", " 'Severe Winds, Weather Advisory', 'Trade Regulation',\n", " 'Organized Crime', 'Port Strike', 'Port Disruption',\n", " 'Port Congestion,Port Disruption', 'Port Closure,Severe Winds',\n", " 'Port Closure,Port Disruption',\n", " 'Port Congestion,Port Disruption,Severe Winds',\n", " 'Port Disruption,Severe Winds', 'Port Disruption,Cargo Disruption',\n", " 'Maritime Accident, Typhoon', 'General Strike',\n", " 'Civil Service Strike',\n", " 'Port Congestion, Miscellaneous Events, Miscellaneous Strikes',\n", " 'Non-industrial Fire', 'Port Congestion, Cargo Disruption',\n", " 'Network Disruption, Port Disruption',\n", " 'Ground Transportation Advisory,Civil Service Strike',\n", " 'Protest / Riot, Roadway Closure / Disruption',\n", " 'Roadway Closure / Disruption, Port Congestion, Miscellaneous Events, Severe Winds, Weather Advisory, Power Outage',\n", " 'Severe Winds, Storm, Weather Advisory, Power Outage',\n", " 'Maritime Accident,Port Disruption',\n", " 'Cargo/Warehouse Theft, Organized Crime', 'Cargo Disruption',\n", " 'Maritime Accident, Cargo Disruption',\n", " 'Maritime Advisory, Cargo Disruption', 'Flooding',\n", " 'Hazmat Response,Industrial Fire',\n", " 'Customs Regulation, Regulatory Advisory, Trade Regulation',\n", " 'Ground Transportation Advisory',\n", " 'Port Congestion, Miscellaneous Events', 'Storm, Weather Advisory',\n", " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Landslide',\n", " 'Fuel Disruption', 'Regulatory Advisory',\n", " 'Maritime Advisory, Public Safety / Security',\n", " 'Piracy,Port Disruption', 'Maritime Accident, Port Disruption',\n", " 'Maritime Accident,Cargo Disruption',\n", " 'Maritime Advisory,Cargo Disruption,Port Disruption',\n", " 'Port Closure, Port Disruption',\n", " 'Protest / Riot, Ground Transportation Advisory, Maritime Advisory',\n", " 'Airline Incident / Crash',\n", " 'Port Closure,Cargo Disruption,Port Disruption',\n", " 'Weather Advisory, Port Disruption, Cargo Disruption',\n", " 'Cargo Disruption, Industry Directives',\n", " 'Roadway Closure / Disruption',\n", " 'Regulatory Advisory, Maritime Advisory',\n", " 'Maritime Advisory,Cargo Disruption', 'Vehicle Accident',\n", " 'Security Advisory',\n", " 'Public Holidays, Port Disruption, Customs Delay', 'Explosion',\n", " 'Industrial Fire', 'Maritime Accident, Chemical Spill',\n", " 'Train Delays / Disruption,Cargo Disruption,Port Disruption',\n", " 'Port Disruption,Port Congestion',\n", " 'Port Closure,Maritime Advisory', 'Port Closure,Weather Advisory',\n", " 'Train Accident / Derailment', 'Public Health Advisory',\n", " 'Death / Injury, Individuals in Focus',\n", " 'Cargo Disruption,Roadway Closure / Disruption,Flooding',\n", " 'Customs Delay, Cargo Disruption', 'Water / Sewage Disruption',\n", " 'Ground Transportation Advisory, Storm, Weather Advisory',\n", " 'Severe Winds, Storm', 'Customs Delay,Port Congestion',\n", " 'Protest / Riot, Death / Injury, Individuals in Focus',\n", " 'Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", " 'Military Operations, Ground Transportation Advisory, Maritime Advisory, Kidnap / Detention, Individuals in Focus',\n", " 'Protest / Riot, Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", " 'Protest / Riot, Kidnap / Detention, Individuals in Focus',\n", " 'Civil Unrest Advisory, Miscellaneous Events, Ground Transportation Advisory',\n", " 'Protest / Riot, Ground Transportation Advisory',\n", " 'Military Operations',\n", " 'Roadway Closure / Disruption, Ground Transportation Advisory, Public Safety / Security',\n", " 'Military Operations, Ground Transportation Advisory, Aviation Advisory, Maritime Advisory',\n", " 'Military Operations, Protest / Riot, Death / Injury, Individuals in Focus',\n", " 'Train Accident / Derailment,Cargo Disruption',\n", " 'Roadway Closure / Disruption, Public Safety / Security',\n", " 'Weather Advisory, Train Delays / Disruption',\n", " 'Non-industrial Fire, Train Delays / Disruption',\n", " 'Typhoon, Port Closure, Port Disruption, Maritime Advisory, Flight Delays / Cancellations, Aviation Advisory',\n", " 'Customs Delay', 'Piracy',\n", " 'Roadway Closure / Disruption, Ground Transportation Advisory, Cargo Disruption',\n", " 'Trade Regulation, Public Safety / Security',\n", " 'Customs Delay,Customs Regulation',\n", " 'Industrial Action,General Strike',\n", " 'Port Disruption, Cargo Disruption, Maritime Advisory',\n", " 'Public Safety / Security, Public Health Advisory',\n", " 'Customs Regulation,Regulatory Advisory', 'Hurricane',\n", " 'Cargo/Warehouse Theft, Organized Crime, Public Safety / Security',\n", " 'Roadway Closure / Disruption, Political Info / Event',\n", " 'Chemical Spill, Port Disruption', 'Port Closure,Port Congestion',\n", " 'Power Outage,Storm',\n", " 'Roadway Closure / Disruption, Vehicle Accident, Non-industrial Fire',\n", " 'Public Holidays', 'Shooting, Public Safety / Security',\n", " 'Roadway Closure / Disruption, Flooding, Storm',\n", " 'Earthquake, Weather Advisory', 'Weather Advisory, Storm',\n", " 'Port Disruption, Network Disruption',\n", " 'Port Closure, Tropical Cyclone / Storm',\n", " 'Cargo Disruption, Port Disruption',\n", " 'Cargo Disruption, Port Disruption, Port Congestion',\n", " 'Port Disruption,Port Closure', 'Port Congestion,Port Strike',\n", " 'Port Closure,Cargo Disruption',\n", " 'Port Congestion, Port Disruption, Weather Advisory, Severe Winds',\n", " 'Port Disruption,Storm',\n", " 'Tropical Cyclone / Storm, Severe Winds, Port Disruption, Cargo Disruption',\n", " 'Port Disruption,Network Disruption',\n", " 'Roadway Closure / Disruption,Protest / Riot',\n", " 'Ground Transportation Advisory, Roadway Closure / Disruption',\n", " 'Port Congestion,Roadway Closure / Disruption,Port Disruption',\n", " 'Cargo/Warehouse Theft, Piracy, Robbery',\n", " 'Vehicle Accident, Train Accident / Derailment, Train Delays / Disruption',\n", " 'Waterway closure / Disruption,Maritime Advisory',\n", " 'Maritime Advisory, Political Info / Event',\n", " 'Roadway Closure / Disruption,General Strike',\n", " 'Train Delays / Disruption, Cargo Disruption',\n", " 'Port Disruption, Severe Winds',\n", " 'Port Disruption,Port Closure,Severe Winds',\n", " 'Waterway Closure / Disruption,Port Disruption',\n", " 'Cargo Transportation Strike',\n", " 'Waterway Closure / Disruption, Maritime Advisory',\n", " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes',\n", " 'Miscellaneous Strikes, Train Delays / Disruption',\n", " 'Port Congestion, Miscellaneous Events, Public Safety / Security, Non-industrial Fire',\n", " 'Organized Crime,Cargo theft',\n", " 'Roadway Closure / Disruption,Severe Winds',\n", " 'Port Closure,Cargo Disruption,Severe Winds',\n", " 'Port Disruption,Maritime Advisory,Severe Winds',\n", " 'Port Closure,Severe Winds,Typhoon',\n", " 'Barge Accident,Waterway closure / Disruption',\n", " 'Port Disruption,Maritime Advisory',\n", " 'Port Congestion, Port Disruption, Roadway Closure / Disruption',\n", " 'Train Delays / Disruption, Roadway Closure / Disruption',\n", " 'Cargo Disruption, Maritime Advisory, Port Disruption',\n", " 'Ground Transportation Advisory, Port Disruption, Cargo Disruption',\n", " 'Typhoon', 'Barge Accident',\n", " 'Roadway Closure / Disruption, Vehicle Accident, Public Safety / Security',\n", " 'Port Congestion, Maritime Accident, Miscellaneous Events',\n", " 'Train Accident / Derailment, Train Delays / Disruption',\n", " 'Public Safety / Security, Train Accident / Derailment, Train Delays / Disruption',\n", " 'Public Safety / Security, Train Delays / Disruption',\n", " 'Ground Transportation Advisory, Train Delays / Disruption',\n", " 'Port Congestion, Miscellaneous Events, Ground Transportation Advisory',\n", " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Train Delays / Disruption',\n", " 'Flooding, Severe Winds, Weather Advisory',\n", " 'Roadway Closure / Disruption, Non-industrial Fire, Public Health Advisory',\n", " 'Roadway Closure / Disruption, Shooting, Public Safety / Security',\n", " 'Flight Delays / Cancellations, Weather Advisory',\n", " 'Roadway Closure / Disruption, Public Safety / Security, Non-industrial Fire',\n", " 'Roadway Closure / Disruption, Public Safety / Security, Non-industrial Fire, Train Delays / Disruption',\n", " 'Storm, Public Health Advisory',\n", " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory, Train Delays / Disruption',\n", " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory, Storm, Train Delays / Disruption',\n", " 'Flight Delays / Cancellations, Port Congestion, Miscellaneous Events, Weather Advisory, Storm, Power Outage',\n", " 'Ground Transportation Advisory, Public Safety / Security',\n", " 'Ground Transportation Advisory, Flooding, Weather Advisory',\n", " 'Severe Winds, Storm, Power Outage', 'Storm, Power Outage',\n", " 'Ground Transportation Advisory, Storm',\n", " 'Protest / Riot, Roadway Closure / Disruption, Fuel Disruption, Train Delays / Disruption',\n", " 'Flight Delays / Cancellations, Public Safety / Security, Severe Winds, Storm',\n", " 'Roadway Closure / Disruption, Flooding, Severe Winds, Storm',\n", " 'Protest / Riot, Political Info / Event, Ground Transportation Advisory',\n", " 'Port Congestion, Maritime Accident, Public Health Advisory',\n", " 'Roadway Closure / Disruption, Storm, Train Delays / Disruption, Public Health Advisory',\n", " 'Roadway Closure / Disruption, Ground Transportation Advisory',\n", " 'Ground Transportation Advisory, Hurricane, Weather Advisory',\n", " 'Protest / Riot, Roadway Closure / Disruption, Public Safety / Security',\n", " 'Ground Transportation Advisory, Public Safety / Security, Hurricane, Weather Advisory',\n", " 'Ground Transportation Advisory, Public Safety / Security, Hurricane',\n", " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Power Outage',\n", " 'Severe Winds, Weather Advisory, Public Health Advisory',\n", " 'Roadway Closure / Disruption, Flooding, Storm, Weather Advisory, Power Outage',\n", " 'Public Safety / Security, Flooding, Weather Advisory, Storm',\n", " 'Chemical Spill, Public Health Advisory', 'Plant Closure',\n", " 'Cargo Transportation Strike,Port Disruption',\n", " 'Port Congestion,Port Closure',\n", " 'Port Disruption, Maritime Advisory',\n", " 'Port Congestion, Port Disruption, Weather Advisory',\n", " 'Port Disruption, Roadway Closure / Disruption',\n", " 'Port Disruption, Port Congestion, Typhoon, Cargo Disruption',\n", " 'Port Disruption, Port Congestion',\n", " 'Port Disruption, Roadway Closure / Disruption, Non-industrial Fire',\n", " 'Port Closure,Port Disruption,Severe Winds',\n", " 'Port Disruption,Protest / Riot,Roadway Closure / Disruption',\n", " 'Maritime Advisory, Regulatory Advisory',\n", " 'Port Congestion, Port Disruption, Cargo Disruption',\n", " 'Port Disruption,Weather Advisory',\n", " 'Port Disruption,Industrial Action',\n", " 'Industrial Fire, Chemical Spill',\n", " 'Maritime Accident,Waterway Closure / Disruption',\n", " 'Weather Advisory, Port Congestion', 'Port Disruption, Ransomware',\n", " 'Maritime Advisory, Port Congestion, Severe Winds',\n", " 'Port Closure, Port Disruption, Cargo Disruption',\n", " 'Port Disruption, Cargo Disruption, Severe Winds',\n", " 'Cargo Transportation Strike,Cargo Disruption,Customs Delay,Port Strike',\n", " 'Port Closure, Tropical Cyclone / Storm, Typhoon',\n", " 'Bridge Collapse, Train Delays / Disruption, Roadway Closure / Disruption, Port Closure, Port Disruption',\n", " 'Port Closure, Cargo Disruption',\n", " 'Miscellaneous Strikes, Public Transportation Disruption',\n", " 'Cargo Transportation Strike,Port Strike,Port Congestion',\n", " 'Trade Regulation, Customs Delay, Border Closure / Delay',\n", " 'Port Disruption,Power Outage',\n", " 'Port Disruption, Tropical Cyclone / Storm',\n", " 'Port Closure, Port Congestion',\n", " 'Trade Regulation, Cargo Disruption', 'Robbery',\n", " 'Bomb Detonation / Explosion, Public Safety / Security',\n", " 'Roadway Closure / Disruption, Shooting',\n", " 'Bomb Detonation / Explosion, Roadway Closure / Disruption',\n", " 'Roadway Closure / Disruption, Flooding, Weather Advisory',\n", " 'Weather Advisory, Power Outage',\n", " 'Roadway Closure / Disruption, Weather Advisory, Storm',\n", " 'Roadway Closure / Disruption, Public Safety / Security, Train Accident / Derailment',\n", " 'Flooding, Storm, Power Outage',\n", " 'Chemical Spill, Non-industrial Fire',\n", " 'Roadway Closure / Disruption, Train Accident / Derailment, Train Delays / Disruption',\n", " 'Public Safety / Security, Robbery',\n", " 'Protest / Riot, Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", " 'Cargo Disruption, Maritime Advisory, Tropical Cyclone / Storm',\n", " 'Port Congestion,Port Disruption,Customs Regulation',\n", " 'Ground Transportation Advisory,Weather Advisory',\n", " 'Workplace Accident,Maritime Accident',\n", " 'Workplace Accident, Maritime Accident',\n", " 'Maritime Advisory,Port Strike',\n", " 'Cargo Disruption, Public Safety / Security',\n", " 'Miscellaneous Events, Maritime Advisory',\n", " 'Roadway Closure / Disruption,Cargo Disruption',\n", " 'Port Closure,Protest / Riot',\n", " 'Cargo/Warehouse Theft, Public Safety / Security',\n", " 'Power Outage, Roadway Closure / Disruption, Weather Advisory',\n", " 'Public Safety / Security, Roadway Closure / Disruption, Vehicle Accident',\n", " 'Protest / Riot, Public Safety / Security, Roadway Closure / Disruption',\n", " 'Public Safety / Security, Hazmat Response, Public Health Advisory, Roadway Closure / Disruption',\n", " 'Flight Delays / Cancellations, Roadway Closure / Disruption, Weather Advisory',\n", " 'Port Disruption, Miscellaneous Strikes',\n", " 'Chemical Spill, Public Safety / Security', 'Power Outage, Storm',\n", " 'Power Outage, Severe Winds', 'Severe Winds',\n", " 'Public Safety / Security, Port Disruption',\n", " 'Power Outage, Weather Advisory, Wildfire',\n", " 'Port Congestion, Miscellaneous Events, Miscellaneous Strikes, Ground Transportation Advisory',\n", " 'Bomb Detonation / Explosion, Hazmat Response',\n", " 'Protest / Riot, Political Info / Event',\n", " 'Non-industrial Fire, Roadway Closure / Disruption',\n", " 'Customs Regulation', 'Industrial zone shutdown',\n", " 'Port Congestion,Cargo Disruption',\n", " 'Port Congestion, Port Closure',\n", " 'Protest / Riot, Train Delays / Disruption, Roadway Closure / Disruption, Miscellaneous Strikes',\n", " 'Port Congestion, Miscellaneous Events, Public Health Advisory',\n", " 'Public Safety / Security, Non-industrial Fire',\n", " 'Chemical Spill, Train Accident / Derailment, Train Delays / Disruption',\n", " 'Train Accident / Derailment, Roadway Closure / Disruption',\n", " 'Public Safety / Security, Roadway Closure / Disruption, Shooting',\n", " 'Ground Transportation Advisory, Weather Advisory',\n", " 'Public Safety / Security, Roadway Closure / Disruption',\n", " 'Port Congestion, Miscellaneous Events, Weather Advisory, Non-industrial Fire',\n", " 'Cargo Disruption,Maritime Advisory',\n", " 'Maritime Accident,Barge Accident',\n", " 'Cargo Disruption,Port Disruption',\n", " 'Cargo Transportation Strike,Port Strike',\n", " 'Public Safety / Security, Maritime Accident',\n", " 'Waterway Closure / Disruption',\n", " 'Chemical Spill,Industrial Fire,Production Halt',\n", " 'Chemical Spill, Roadway Closure / Disruption, Port Disruption, Public Safety / Security',\n", " 'Trade Restrictions', 'Flooding, Roadway Closure / Disruption',\n", " 'Individuals in Focus', 'Port Disruption,Regulatory Advisory',\n", " 'Structure Collapse', 'Port Congestion,Maritime Advisory',\n", " 'Cargo Disruption,Maritime Accident',\n", " 'Fuel Disruption,Industrial Action',\n", " 'Industrial Action, Port Congestion, Port Disruption',\n", " 'Maritime Advisory,Weather Advisory',\n", " 'Regulatory Advisory, Miscellaneous Events, Customs Regulation',\n", " 'Security Advisory, Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", " 'Customs Regulation,Trade Regulation', 'Data breach',\n", " 'Vehicle Accident, Roadway Closure / Disruption',\n", " 'Port Disruption,Protest / Riot',\n", " 'Port Congestion, Port Closure, Miscellaneous Events, Severe Winds, Weather Advisory',\n", " 'Port Disruption, Weather Advisory',\n", " 'Public Safety / Security, Customs Regulation',\n", " 'Industrial Fire,Port Disruption',\n", " 'Maritime Accident, Non-industrial Fire',\n", " 'Flight Delays / Cancellations',\n", " 'Flooding, Airport Accident / Closure',\n", " 'Train Delays / Disruption, Miscellaneous Strikes',\n", " 'General Strike, Miscellaneous Strikes',\n", " 'Train Delays / Disruption, Weather Advisory',\n", " 'Train Delays / Disruption,Cargo Disruption',\n", " 'Port Disruption, Customs Delay',\n", " 'Public Safety / Security, Weather Advisory',\n", " 'Military Operations, Ground Transportation Advisory',\n", " 'Bomb Detonation / Explosion, Port Congestion, Maritime Accident, Miscellaneous Events, Non-industrial Fire',\n", " 'Protest / Riot, Miscellaneous Strikes, Ground Transportation Advisory',\n", " 'Hazmat Response',\n", " 'Roadway Closure / Disruption,Maritime Accident',\n", " 'Port Strike,Port Disruption',\n", " 'Kidnap / Detention, Individuals in Focus',\n", " 'Protest / Riot, Ground Transportation Advisory, Miscellaneous Strikes',\n", " 'Tropical Cyclone / Storm, Weather Advisory',\n", " 'Kidnap / Detention, Piracy',\n", " 'Miscellaneous Events, Individuals in Focus',\n", " 'Public Safety / Security, Flooding, Roadway Closure / Disruption',\n", " 'Non-industrial Fire, Port Disruption',\n", " 'Non-industrial Fire, Maritime Accident',\n", " 'Roadway Closure / Disruption,Port Disruption',\n", " 'Explosion, Chemical Spill',\n", " 'Military Operations, Security Advisory, Ground Transportation Advisory, Maritime Advisory',\n", " 'Military Operations, Security Advisory, Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", " 'Force Majeure',\n", " 'Public Safety / Security, Flooding, Roadway Closure / Disruption, Weather Advisory',\n", " 'Public Health Advisory, Military Operations',\n", " 'Bomb Detonation / Explosion, Non-industrial Fire',\n", " 'Port Disruption, Non-industrial Fire',\n", " 'Organized Crime,Cargo Disruption',\n", " 'Train Accident / Derailment, Train Delays / Disruption, Roadway Closure / Disruption, Vehicle Accident',\n", " 'Organized Crime, Maritime Advisory, Cargo/Warehouse Theft',\n", " 'Death / Injury',\n", " 'Individuals in Focus, Maritime Advisory, Protest / Riot',\n", " 'Organized Crime, Kidnap / Detention, Ground Transportation Advisory, Individuals in Focus, Cargo/Warehouse Theft',\n", " 'Terror Attack',\n", " 'Organized Crime, Security Advisory, Individuals in Focus, Kidnap / Detention, Maritime Advisory, Cargo/Warehouse Theft',\n", " 'Organized Crime, Security Advisory, Ground Transportation Advisory',\n", " 'Chemical Spill, Non-industrial Fire, Train Accident / Derailment',\n", " 'Network Disruption', 'Truck Driving Ban',\n", " 'Customs Regulation, Public Health Advisory', 'Telecom Outage',\n", " 'Cargo Disruption, Port Strike, Maritime Advisory',\n", " 'Energy Sector Strike',\n", " 'Cargo Disruption, Roadway Closure / Disruption, Maritime Advisory',\n", " 'Port Disruption,Cargo Disruption,Organized Crime',\n", " 'Chemical Spill, Non-industrial Fire, Roadway Closure / Disruption, Vehicle Accident',\n", " 'Regulatory Advisory,Industry Directives',\n", " 'Cargo Transportation Strike,Protest / Riot',\n", " 'Public Health Advisory, Roadway Closure / Disruption',\n", " 'Public Safety / Security, Non-industrial Fire, Roadway Closure / Disruption',\n", " 'Earthquake, Public Safety / Security',\n", " 'Flooding, Landslide, Severe Winds, Storm',\n", " 'Flight Delays / Cancellations, Public Safety / Security',\n", " 'Protest / Riot, Public Safety / Security',\n", " 'Organized Crime, Cargo/Warehouse Theft',\n", " 'Organized Crime, Cargo/Warehouse Theft, Public Safety / Security',\n", " 'Maritime Advisory, Port Disruption',\n", " 'Cargo Disruption,Weather Advisory',\n", " 'Industrial Fire,Roadway Closure / Disruption',\n", " 'Power Outage,Port Disruption',\n", " 'Military Operations, Protest / Riot, Death / Injury, Miscellaneous Events, Individuals in Focus',\n", " 'Train Delays / Disruption,Protest / Riot',\n", " 'Roadway Closure / Disruption,Weather Advisory',\n", " 'Port Disruption, Severe Winds, Ground Transportation Advisory',\n", " 'Public Safety / Security, Non-industrial Fire, Maritime Accident',\n", " 'Waterway Closure / Disruption, Cargo Disruption',\n", " 'Bomb Detonation / Explosion',\n", " 'Port Disruption,Train Delays / Disruption,Severe Winds',\n", " 'Production Halt,Earthquake',\n", " 'Maritime Accident, Chemical Spill, Hazmat Response',\n", " 'Industry Directives',\n", " 'Flooding, Severe Winds, Storm, Weather Advisory',\n", " 'Protest / Riot,Roadway Closure / Disruption',\n", " 'Train Delays / Disruption,Industrial Action',\n", " 'Flooding, Public Health Advisory, Ground Transportation Advisory',\n", " 'Flooding, Landslide, Roadway Closure / Disruption',\n", " 'Protest / Riot, Public Safety / Security, Shooting, Miscellaneous Strikes',\n", " 'Industrial Action,Port Disruption',\n", " 'Port Strike,Cargo Disruption', 'Network Disruption,Customs Delay',\n", " 'Civil Unrest Advisory',\n", " 'Train Accident / Derailment, Chemical Spill',\n", " 'Regulatory Advisory,Maritime Advisory', 'Kidnap / Detention',\n", " 'Chemical Spill, Hazmat Response, Maritime Accident',\n", " 'Vehicle Accident, Public Safety / Security',\n", " 'Cargo Disruption,Vehicle Accident,Port Disruption',\n", " 'Protest / Riot,Port Disruption',\n", " 'Roadway Closure / Disruption,Protest / Riot,Cargo Transportation Strike',\n", " 'Port Strike, Cargo Disruption',\n", " 'Storm, Ground Transportation Advisory',\n", " 'Robbery, Cargo/Warehouse Theft',\n", " 'Regulatory Advisory,Cargo Disruption,Customs Regulation',\n", " 'Airline Incident / Crash, Flight Delays / Cancellations',\n", " 'Flight Delays / Cancellations, Non-industrial Fire, Train Delays / Disruption',\n", " 'Protest / Riot, Port Disruption, Roadway Closure / Disruption',\n", " 'Flight Delays / Cancellations, Train Delays / Disruption',\n", " 'Protest / Riot, Roadway Closure / Disruption, Ground Transportation Advisory',\n", " 'Train Delays / Disruption, Vehicle Accident',\n", " 'Non-industrial Fire, Roadway Closure / Disruption, Vehicle Accident',\n", " 'Public Safety / Security, Wildfire', 'Wildfire',\n", " 'Public Safety / Security, Non-industrial Fire, Public Health Advisory',\n", " 'Public Health Advisory, Port Disruption, Roadway Closure / Disruption, Miscellaneous Strikes, Weather Advisory, Wildfire',\n", " 'Flight Delays / Cancellations, Public Safety / Security, Wildfire',\n", " 'Flooding, Power Outage, Storm, Weather Advisory',\n", " 'Tropical Cyclone / Storm, Power Outage, Severe Winds',\n", " 'Flooding, Public Health Advisory, Hurricane, Severe Winds, Weather Advisory',\n", " 'Flooding, Hurricane, Power Outage, Severe Winds, Ground Transportation Advisory',\n", " 'Tropical Cyclone / Storm, Port Disruption',\n", " 'Tropical Cyclone / Storm, Port Disruption, Storm',\n", " 'Power Outage, Weather Advisory',\n", " 'Chemical Spill, Bomb Detonation / Explosion',\n", " 'Flooding, Power Outage, Ground Transportation Advisory',\n", " 'Flight Delays / Cancellations, Protest / Riot, Non-industrial Fire, Public Safety / Security, Roadway Closure / Disruption, Miscellaneous Strikes',\n", " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes, Ground Transportation Advisory',\n", " 'Political Info / Event',\n", " 'Protest / Riot, Public Safety / Security, Roadway Closure / Disruption, Ground Transportation Advisory',\n", " 'Protest / Riot, Non-industrial Fire, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Shooting',\n", " 'Protest / Riot, Non-industrial Fire, Public Safety / Security',\n", " 'Flight Delays / Cancellations, Protest / Riot, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Ground Transportation Advisory',\n", " 'Protest / Riot, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Miscellaneous Strikes',\n", " 'Flight Delays / Cancellations, Public Safety / Security, Flooding, Port Disruption, Power Outage, Train Delays / Disruption, Roadway Closure / Disruption, Severe Winds, Storm',\n", " 'Public Safety / Security, Storm, Weather Advisory',\n", " 'Public Safety / Security, Flooding, Landslide, Roadway Closure / Disruption, Weather Advisory',\n", " 'Earthquake, Public Safety / Security, Public Health Advisory',\n", " 'Port Disruption, Severe Winds, Weather Advisory',\n", " 'Train Delays / Disruption, Miscellaneous Strikes, Ground Transportation Advisory',\n", " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes, Public Safety / Security',\n", " 'Protest / Riot, Security Advisory, Political Info / Event, Roadway Closure / Disruption, Miscellaneous Strikes',\n", " 'Public Safety / Security, Ground Transportation Advisory',\n", " 'Power Outage, Ground Transportation Advisory',\n", " 'Earthquake, Train Delays / Disruption, Roadway Closure / Disruption',\n", " 'Hazmat Response, Train Delays / Disruption',\n", " 'Flight Delays / Cancellations, Train Accident / Derailment, Train Delays / Disruption',\n", " 'Flooding, Roadway Closure / Disruption, Weather Advisory',\n", " 'Airport Accident / Closure, Public Safety / Security, Hurricane, Severe Winds, Ground Transportation Advisory, Weather Advisory',\n", " 'Flooding, Hurricane, Power Outage, Severe Winds, Weather Advisory',\n", " 'Public Safety / Security, Flooding, Power Outage, Storm, Weather Advisory',\n", " 'Public Safety / Security, Maritime Advisory, Robbery',\n", " 'Port Closure,Roadway Closure / Disruption',\n", " 'Cargo Disruption,Regulatory Advisory',\n", " 'Customs Delay,Port Disruption',\n", " 'Train Delays / Disruption,Port Disruption',\n", " 'Flooding,Weather Advisory', 'Port Strike,Port Congestion',\n", " 'Weather Advisory,Roadway Closure / Disruption',\n", " 'Port Disruption, Port Strike',\n", " 'Port Strike,Roadway Closure / Disruption,Port Congestion',\n", " 'Public Safety / Security, Ground Transportation Advisory, Wildfire',\n", " 'General Strike,Roadway Closure / Disruption',\n", " 'Border Closure / Delay,Roadway Closure / Disruption',\n", " 'Roadway Closure / Disruption, Protest / Riot',\n", " 'Port Congestion,Weather Advisory',\n", " 'Maritime Advisory,Port Congestion',\n", " 'Protest / Riot,Industrial Action,Port Strike,Port Disruption',\n", " 'Port Strike,Customs Delay,General Strike',\n", " 'Customs Delay,Civil Service Strike,Port Congestion',\n", " 'Industrial Action, Miscellaneous Strikes',\n", " 'Industrial Action,Plant Closure', 'Typhoon,Landslide,Flooding',\n", " 'Roadway Closure / Disruption,Protest / Riot,Maritime Advisory,Port Disruption',\n", " 'Hurricane, Public Safety / Security',\n", " 'Port Disruption,Port Closure,Port Congestion',\n", " 'Aviation Advisory,Ground Transportation Advisory',\n", " 'Customs Regulation,Port Congestion',\n", " 'Industrial Fire, Hazmat Response',\n", " 'Port Strike, Miscellaneous Strikes',\n", " 'Port Congestion,Waterway Closure / Disruption,Maritime Advisory',\n", " 'Miscellaneous Strikes, Customs Delay, Civil Service Strike',\n", " 'Miscellaneous Strikes, Industrial Action',\n", " 'Train Accident / Derailment,Train Delays / Disruption',\n", " 'Industrial Action,Protest / Riot,Cargo Transportation Strike',\n", " 'Robbery, Public Safety / Security, Roadway Closure / Disruption',\n", " 'Non-industrial Fire, Public Safety / Security',\n", " 'Public Safety / Security, Flooding',\n", " 'Chemical Spill, Bomb Detonation / Explosion, Non-industrial Fire',\n", " 'Public Safety / Security, Security Advisory, Roadway Closure / Disruption, Vehicle Accident',\n", " 'Shooting', 'Roadway Closure / Disruption, Miscellaneous Strikes',\n", " 'Blizzard, Weather Advisory',\n", " 'Chemical Spill, Roadway Closure / Disruption',\n", " 'Severe Winds, Storm, Weather Advisory',\n", " 'Power Outage, Roadway Closure / Disruption, Vehicle Accident',\n", " 'Maritime Accident, Roadway Closure / Disruption',\n", " 'Roadway Closure / Disruption, Storm, Weather Advisory',\n", " 'Protest / Riot, Ground Transportation Advisory, Aviation Advisory, Maritime Advisory, Miscellaneous Events, Individuals in Focus',\n", " 'Flooding, Roadway Closure / Disruption, Storm, Weather Advisory',\n", " 'Production Halt, Cargo Disruption, Port Congestion, Public Holidays',\n", " 'Public Health Advisory, Ground Transportation Advisory, Security Advisory',\n", " 'Outbreak of disease', 'Maritime Advisory, Outbreak of disease',\n", " 'Individuals in Focus, Political Info / Event, Miscellaneous Events',\n", " 'Miscellaneous Events, Political Info / Event, Ground Transportation Advisory',\n", " 'Public Safety / Security, Security Advisory',\n", " 'Roadway Closure / Disruption, Cargo Transportation Strike',\n", " 'Maritime Advisory, Political Info / Event, Miscellaneous Events',\n", " 'Regulatory Advisory, Ground Transportation Advisory, Miscellaneous Strikes, Maritime Advisory',\n", " 'Weather Advisory, Ground Transportation Advisory, Flooding',\n", " 'Tropical Cyclone / Storm, Severe Winds, Weather Advisory',\n", " 'Maritime Advisory, Waterway Closure / Disruption',\n", " 'Miscellaneous Events, Political Info / Event, Maritime Advisory',\n", " 'Maritime Advisory, Political Info / Event, Public Safety / Security, Military Operations',\n", " 'Military Operations, Political Info / Event, Ground Transportation Advisory',\n", " 'Insolvency', 'Protest / Riot, Port Disruption',\n", " 'Public Health Advisory, Ground Transportation Advisory, Public Safety / Security, Security Advisory',\n", " 'Ground Transportation Advisory, Vehicle Accident, Port Disruption',\n", " 'Political Info / Event, Protest / Riot',\n", " 'Public Safety / Security, Maritime Advisory, Death / Injury, Individuals in Focus, Robbery',\n", " 'Maritime Advisory, Political Info / Event, Miscellaneous Events, Public Safety / Security',\n", " 'Maritime Advisory, Political Info / Event, Miscellaneous Events, Individuals in Focus, Public Safety / Security',\n", " 'Public Safety / Security, Maritime Advisory',\n", " 'Regulatory Advisory, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", " 'Hazmat Response, Ground Transportation Advisory, Network Disruption',\n", " 'Port Congestion, Port Disruption',\n", " 'Regulatory Advisory, Public Health Advisory, Security Advisory',\n", " 'Hazmat Response, Public Safety / Security',\n", " 'Airport Accident / Closure, Aviation Advisory, Explosion',\n", " 'Maritime Accident, Outbreak of disease',\n", " 'Cargo Disruption, Outbreak of disease',\n", " 'Cargo Disruption, Train Delays / Disruption',\n", " 'Cargo Disruption, Port Strike, Port Disruption',\n", " 'Chemical Spill, Train Delays / Disruption',\n", " 'Kidnap / Detention, Protest / Riot, Individuals in Focus',\n", " 'Regulatory Advisory, Political Info / Event',\n", " 'Military Operations, Political Info / Event, Protest / Riot',\n", " 'Weather Advisory, Ground Transportation Advisory, Network Disruption',\n", " 'Public Safety / Security, Network Disruption, Maritime Advisory',\n", " 'Maritime Accident, Port Closure',\n", " 'Port Congestion, Cargo Disruption, Port Disruption',\n", " 'Regulatory Advisory, Political Info / Event, Protest / Riot',\n", " 'Cargo Disruption, Outbreak of disease, Maritime Advisory',\n", " 'Port Disruption, Maritime Advisory, Severe Winds', 'Ransomware',\n", " 'Port Congestion, Outbreak of disease',\n", " 'Public Health Advisory, Security Advisory',\n", " 'Maritime Advisory, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", " 'Port Congestion, Regulatory Advisory',\n", " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", " 'Outbreak of disease, Ground Transportation Advisory, Port Disruption',\n", " 'Vehicle Accident, Non-industrial Fire, Roadway Closure / Disruption',\n", " 'Outbreak of disease, Maritime Advisory',\n", " 'Hazmat Response, Roadway Closure / Disruption',\n", " 'Public Safety / Security, Hazmat Response',\n", " 'Outbreak of disease, Port Disruption',\n", " 'Cargo Disruption, Cargo Transportation Strike, Port Disruption',\n", " 'Public Safety / Security, Cargo Disruption',\n", " 'Production Halt, Cargo Disruption',\n", " 'Public Health Advisory, Severe Winds',\n", " 'Roadway Closure / Disruption, Port Congestion',\n", " 'Port Congestion, Customs Delay, Customs Regulation',\n", " 'Port Disruption, Port Closure',\n", " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Network Disruption, Weather Advisory',\n", " 'Regulatory Advisory, Ground Transportation Advisory',\n", " 'Public Safety / Security, Shooting, Roadway Closure / Disruption',\n", " 'Flooding, Ground Transportation Advisory, Power Outage',\n", " 'Roadway Closure / Disruption, Port Disruption',\n", " 'Cargo Disruption, Flight Delays / Cancellations',\n", " 'Industrial Fire, Port Disruption',\n", " 'Roadway Closure / Disruption, Landslide, Flooding',\n", " 'Cargo Disruption, Flooding',\n", " 'Flooding, Roadway Closure / Disruption, Landslide',\n", " 'Miscellaneous Events, Political Info / Event',\n", " 'Kidnap / Detention, Political Info / Event, Protest / Riot, Individuals in Focus',\n", " 'Train Delays / Disruption, Protest / Riot',\n", " 'Port Closure, Maritime Advisory',\n", " 'Hazmat Response, Port Disruption',\n", " 'Port Disruption, Roadway Closure / Disruption, Weather Advisory',\n", " 'Flooding, Weather Advisory',\n", " 'Aviation Advisory, Political Info / Event, Ground Transportation Advisory, Network Disruption, Maritime Advisory, Hurricane, Weather Advisory',\n", " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Death / Injury, Individuals in Focus',\n", " 'Individuals in Focus, Protest / Riot',\n", " 'Public Safety / Security, Individuals in Focus',\n", " 'Miscellaneous Events, Public Safety / Security',\n", " 'Maritime Advisory, Protest / Riot, Miscellaneous Events',\n", " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Outbreak Of War',\n", " 'Port Disruption, Waterway Closure / Disruption',\n", " 'Production Halt, Fuel Disruption',\n", " 'Miscellaneous Events, Ground Transportation Advisory, Public Health Advisory, Network Disruption, Maritime Advisory, Regulatory Advisory, Security Advisory',\n", " 'Regulatory Advisory, Political Info / Event, Network Disruption, Hurricane, Weather Advisory',\n", " 'Maritime Advisory, Military Operations',\n", " 'Port Disruption, Cargo Disruption',\n", " 'Regulatory Advisory, Public Health Advisory',\n", " 'Public Safety / Security, Train Delays / Disruption, Hazmat Response',\n", " 'Maritime Advisory, Political Info / Event, Military Operations',\n", " 'Flooding, Train Delays / Disruption, Landslide, Weather Advisory',\n", " 'Regulatory Advisory, Cargo Disruption',\n", " 'Public Health Advisory, Public Safety / Security, Security Advisory',\n", " 'Public Safety / Security, Ground Transportation Advisory, Network Disruption',\n", " 'Ransomware, Data breach',\n", " 'Civil Service Strike, Border Closure / Delay',\n", " 'Outbreak of disease, Miscellaneous Strikes',\n", " 'Political Info / Event, Ground Transportation Advisory, Public Health Advisory',\n", " 'Weather Advisory, Network Disruption',\n", " 'Production Halt, Tropical Cyclone / Storm',\n", " 'Piracy, Maritime Advisory',\n", " 'Protest / Riot, Miscellaneous Strikes, Maritime Advisory, Public Safety / Security',\n", " 'Outbreak of disease, Production Halt', 'Border Closure / Delay',\n", " 'Weather Advisory, Ground Transportation Advisory, Hazmat Response, Maritime Advisory',\n", " 'Non-industrial Fire, Port Disruption, Public Safety / Security',\n", " 'Miscellaneous Strikes, Protest / Riot, Public Safety / Security',\n", " 'Border Closure / Delay, Aviation Advisory, Ground Transportation Advisory, Maritime Advisory',\n", " 'Phishing', 'Cargo Disruption, Fuel Disruption',\n", " 'Kidnap / Detention, Maritime Advisory',\n", " 'Port Disruption, Power Outage',\n", " 'Miscellaneous Events, Political Info / Event, Individuals in Focus',\n", " 'Port Disruption, Outbreak of disease',\n", " 'Maritime Advisory, Environmental Regulations',\n", " 'Weather Advisory, Tornado', 'Industrial Action, Production Halt',\n", " 'Chemical Spill, Non-industrial Fire, Vehicle Accident, Roadway Closure / Disruption',\n", " 'Protest / Riot, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", " 'Network Disruption, Political Info / Event, Protest / Riot',\n", " 'Weather Advisory, Flooding',\n", " 'Aviation Advisory, Maritime Advisory',\n", " 'Political Info / Event, Public Health Advisory, Security Advisory',\n", " 'Train Delays / Disruption, Storm, Weather Advisory',\n", " 'Landslide, Train Delays / Disruption',\n", " 'Port Disruption, Train Delays / Disruption',\n", " 'Public Safety / Security, Public Health Advisory, Maritime Advisory',\n", " 'Roadway Closure / Disruption, Cargo Disruption, Maritime Advisory, Port Disruption',\n", " 'Regulatory Advisory, Ground Transportation Advisory, Maritime Advisory, Weather Advisory',\n", " 'Network Disruption, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Maritime Advisory',\n", " 'Outbreak of disease, Cargo Disruption', 'Hail, Weather Advisory',\n", " 'Weather Advisory, Hail',\n", " 'Regulatory Advisory, Public Health Advisory, Network Disruption',\n", " 'Cargo Disruption, Customs Regulation',\n", " 'Military Operations, Public Safety / Security',\n", " 'Public Health Advisory, Storm, Weather Advisory',\n", " 'Maritime Accident, Port Disruption, Severe Winds',\n", " 'Flooding, Roadway Closure / Disruption, Storm',\n", " 'Flooding, Power Outage, Severe Winds, Storm, Weather Advisory',\n", " 'Political Info / Event, Miscellaneous Strikes',\n", " 'Ground Transportation Advisory, Regulatory Advisory',\n", " 'Flooding, Public Health Advisory, Severe Winds, Weather Advisory',\n", " 'Production Halt, Environmental Regulations',\n", " 'Cargo Disruption, Trade Restrictions',\n", " 'Non-industrial Fire, Vehicle Accident, Roadway Closure / Disruption',\n", " 'Political Info / Event, Protest / Riot, Public Safety / Security, Security Advisory',\n", " 'Trade Regulation, Maritime Advisory',\n", " 'Maritime Advisory, Miscellaneous Events',\n", " 'Miscellaneous Events, Individuals in Focus, Public Safety / Security',\n", " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Individuals in Focus',\n", " 'Political Info / Event, Miscellaneous Events',\n", " 'Maritime Advisory, Miscellaneous Events, Public Safety / Security',\n", " 'Miscellaneous Events, Political Info / Event, Public Safety / Security',\n", " 'Industrial Fire, Cargo Disruption',\n", " 'Train Accident / Derailment, Vehicle Accident, Roadway Closure / Disruption, Train Delays / Disruption',\n", " 'Weather Advisory, Network Disruption, Maritime Advisory',\n", " 'Flooding, Storm',\n", " 'Regulatory Advisory, Political Info / Event, Public Health Advisory',\n", " 'Public Safety / Security, Protest / Riot, Ground Transportation Advisory, Public Health Advisory',\n", " 'Regulatory Advisory, Network Disruption',\n", " 'Port Strike, Cargo Disruption, Port Disruption',\n", " 'Roadway Closure / Disruption, Industrial Action',\n", " 'Roadway Closure / Disruption, Protest / Riot, Ground Transportation Advisory',\n", " 'Kidnap / Detention, Maritime Advisory, Miscellaneous Events, Terror Attack',\n", " 'Political Info / Event, Protest / Riot, Miscellaneous Events',\n", " 'Miscellaneous Events, Ground Transportation Advisory, Death / Injury, Terror Attack',\n", " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Public Safety / Security',\n", " 'Regulatory Advisory, Cargo Disruption, Customs Delay',\n", " 'Port Closure, Cargo Disruption, Port Disruption',\n", " 'Miscellaneous Events, Protest / Riot, Ground Transportation Advisory',\n", " 'Public Transportation Disruption, Cargo Disruption, Cargo Transportation Strike, Port Strike, Port Closure, Port Congestion, Port Disruption',\n", " 'Train Delays / Disruption, Non-industrial Fire',\n", " 'Port Closure, Severe Winds',\n", " 'Maritime Advisory, Aviation Advisory',\n", " 'Miscellaneous Events, Maritime Advisory, Public Safety / Security',\n", " 'Fuel Disruption, Protest / Riot',\n", " 'Earthquake, Train Delays / Disruption',\n", " 'Port Disruption, Cargo Disruption, Port Congestion',\n", " 'Flooding, Ground Transportation Advisory, Roadway Closure / Disruption, Public Health Advisory, Power Outage, Storm',\n", " 'Individuals in Focus, Political Info / Event',\n", " 'Bomb Detonation / Explosion, Non-industrial Fire, Maritime Accident',\n", " 'Weather Advisory, Tropical Cyclone / Storm',\n", " 'Port Disruption, Ground Transportation Advisory, Train Delays / Disruption, Severe Winds, Storm, Weather Advisory',\n", " 'Weather Advisory, Security Advisory',\n", " 'Political Info / Event, Network Disruption, Miscellaneous Events, Outbreak Of War',\n", " 'Port Closure, Maritime Advisory, Port Disruption',\n", " 'Production Halt, Regulatory Advisory',\n", " 'Cargo Transportation Strike, Port Congestion',\n", " 'Flooding, Power Outage, Severe Winds, Storm',\n", " 'Customs Delay, Customs Regulation, Trade Restrictions',\n", " 'Customs Regulation, Border Closure / Delay',\n", " 'Production Halt, Force Majeure',\n", " 'Outbreak of disease, Ground Transportation Advisory, Security Advisory',\n", " 'Maritime Accident, Waterway Closure / Disruption',\n", " 'Port Disruption, Protest / Riot, Maritime Advisory',\n", " 'Port Closure, Chemical Spill',\n", " 'Ground Transportation Advisory, Wildfire, Weather Advisory',\n", " 'Port Strike, Port Closure, Port Congestion',\n", " 'Port Congestion, Cargo Disruption, Port Strike',\n", " 'Cargo Transportation Strike, Port Disruption',\n", " 'Protest / Riot, Plant Closure',\n", " 'Port Congestion, Roadway Closure / Disruption',\n", " 'Port Congestion, Port Closure, Port Disruption',\n", " 'Port Closure, Waterway Closure / Disruption',\n", " 'Industrial Action, Production Halt, Force Majeure',\n", " 'Production Halt, Power Outage',\n", " 'Tropical Cyclone / Storm, Power Outage',\n", " 'Outbreak of disease, Ground Transportation Advisory',\n", " 'Border Closure / Delay, Regulatory Advisory',\n", " 'Public Safety / Security, Public Health Advisory, Security Advisory',\n", " 'Hazmat Response, Public Safety / Security, Security Advisory',\n", " 'Power Outage, Roadway Closure / Disruption, Storm',\n", " 'Organized Crime, Cargo Disruption',\n", " 'Roadway Closure / Disruption, Cargo Disruption, Weather Advisory',\n", " 'Miscellaneous Events, Political Info / Event, Ground Transportation Advisory, Maritime Advisory',\n", " 'Miscellaneous Events, Terror Attack',\n", " 'Miscellaneous Events, Maritime Advisory, Terror Attack',\n", " 'Port Closure, Customs Delay',\n", " 'Maritime Advisory, Public Safety / Security, Militant Action, Military Operations',\n", " 'Production Halt, Outbreak of disease',\n", " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus, Public Safety / Security',\n", " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus, Terror Attack, Outbreak Of War',\n", " 'Miscellaneous Events, Maritime Advisory, Death / Injury, Individuals in Focus, Terror Attack',\n", " 'Military Operations, Protest / Riot',\n", " 'Power Outage, Roadway Closure / Disruption, Severe Winds, Storm, Weather Advisory',\n", " 'Weather Advisory, Hazmat Response, Network Disruption, Maritime Advisory',\n", " 'Industry Directives, Regulatory Advisory',\n", " 'Protest / Riot, Civil Unrest Advisory',\n", " 'Regulatory Advisory, Hazmat Response, Maritime Advisory, Weather Advisory',\n", " 'Production Halt, Industrial Action',\n", " 'Maritime Accident, Maritime Advisory', nan,\n", " 'Political Info / Event, Protest / Riot, Individuals in Focus',\n", " 'Flooding, Roadway Closure / Disruption, Landslide, Severe Winds, Storm, Weather Advisory',\n", " 'Port Disruption, Workplace Accident',\n", " 'Miscellaneous Events, Individuals in Focus, Public Safety / Security, Terror Attack',\n", " 'Regulatory Advisory, Aviation Advisory, Cargo Disruption, Ground Transportation Advisory',\n", " 'Bomb Detonation / Explosion, Maritime Accident',\n", " 'Network Disruption, Maritime Advisory, Public Safety / Security, Militant Action',\n", " 'Miscellaneous Events, Ground Transportation Advisory',\n", " 'Flooding, Landslide, Hurricane',\n", " 'Weather Advisory, Ground Transportation Advisory, Network Disruption, Hurricane',\n", " 'Hazmat Response, Protest / Riot, Public Health Advisory',\n", " 'Military Operations, Political Info / Event',\n", " 'Flooding, Roadway Closure / Disruption, Power Outage, Landslide, Severe Winds, Storm, Weather Advisory',\n", " 'Roadway Closure / Disruption, Severe Winds, Storm',\n", " 'Aviation Advisory, Ground Transportation Advisory, Public Health Advisory, Regulatory Advisory',\n", " 'Public Safety / Security, Political Info / Event, Network Disruption, Militant Action, Security Advisory',\n", " 'Power Outage, Roadway Closure / Disruption, Severe Winds, Storm',\n", " 'Individuals in Focus, Miscellaneous Events',\n", " 'Miscellaneous Events, Protest / Riot, Maritime Advisory',\n", " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Maritime Advisory',\n", " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Ground Transportation Advisory',\n", " 'Public Safety / Security, Political Info / Event, Miscellaneous Events',\n", " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus',\n", " 'Miscellaneous Events, Political Info / Event, Protest / Riot',\n", " 'Public Safety / Security, Individuals in Focus, Kidnap / Detention',\n", " 'Port Closure, Roadway Closure / Disruption, Port Disruption, Flooding',\n", " 'Regulatory Advisory, Protest / Riot, Public Health Advisory, Miscellaneous Strikes',\n", " 'Public Safety / Security, Non-industrial Fire, Roadway Closure / Disruption, Train Delays / Disruption',\n", " 'Aviation Advisory, Political Info / Event, Maritime Advisory, Miscellaneous Events',\n", " 'Chemical Spill, Hazmat Response',\n", " 'Public Safety / Security, Roadway Closure / Disruption, Hazmat Response, Bomb Detonation / Explosion',\n", " 'Flight Delays / Cancellations, Ground Transportation Advisory',\n", " 'Regulatory Advisory, Protest / Riot, Ground Transportation Advisory, Network Disruption',\n", " 'Aviation Advisory, Ground Transportation Advisory, Public Health Advisory, Maritime Advisory, Regulatory Advisory',\n", " 'Death / Injury, Political Info / Event, Miscellaneous Events, Individuals in Focus',\n", " 'Regulatory Advisory, Outbreak of disease',\n", " 'Public Safety / Security, Political Info / Event, Miscellaneous Events, Death / Injury, Individuals in Focus',\n", " 'Power Outage, Severe Winds, Storm',\n", " 'Customs Delay, Cargo Disruption, Weather Advisory',\n", " 'Port Closure, Typhoon',\n", " 'Regulatory Advisory, Ground Transportation Advisory, Public Health Advisory, Network Disruption',\n", " 'Regulatory Advisory, Political Info / Event, Network Disruption',\n", " 'Public Safety / Security, Shooting',\n", " 'Cargo Disruption, Protest / Riot, Ground Transportation Advisory',\n", " 'Protest / Riot, Vehicle Accident, Roadway Closure / Disruption, Public Safety / Security',\n", " 'Train Delays / Disruption, Ground Transportation Advisory, Miscellaneous Strikes',\n", " 'Flooding, Train Delays / Disruption',\n", " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Maritime Advisory',\n", " 'Power Outage, Severe Winds, Storm, Weather Advisory',\n", " 'Roadway Closure / Disruption, Cargo Disruption, Protest / Riot',\n", " 'Public Safety / Security, Public Health Advisory, Flooding, Storm, Weather Advisory',\n", " 'Customs Delay, Port Congestion',\n", " 'Military Operations, Protest / Riot, Public Safety / Security, Security Advisory',\n", " 'Public Safety / Security, Ground Transportation Advisory, Maritime Advisory',\n", " 'Cargo Transportation Strike, Industrial Action',\n", " 'Postal Disruption',\n", " 'Cargo Disruption, Roadway Closure / Disruption',\n", " 'Protest / Riot, Network Disruption, Militant Action, Security Advisory',\n", " 'Public Safety / Security, Roadway Closure / Disruption, Train Delays / Disruption',\n", " 'Aviation Advisory, Ground Transportation Advisory, Maritime Advisory, Miscellaneous Events, Death / Injury, Terror Attack, Outbreak Of War',\n", " 'Miscellaneous Events, Ground Transportation Advisory, Terror Attack, Outbreak Of War',\n", " 'Political Info / Event, Protest / Riot, Miscellaneous Events, Terror Attack',\n", " 'Miscellaneous Events, Protest / Riot',\n", " 'Miscellaneous Events, Maritime Advisory, Public Safety / Security, Robbery',\n", " 'Public Safety / Security, Death / Injury, Individuals in Focus, Robbery',\n", " 'Miscellaneous Events, Ground Transportation Advisory, Public Safety / Security, Robbery',\n", " 'Miscellaneous Events, Maritime Advisory, Death / Injury, Kidnap / Detention, Public Safety / Security, Robbery',\n", " 'Outbreak Of War', 'Port Closure, Port Disruption, Typhoon',\n", " 'Flooding, Roadway Closure / Disruption, Port Closure, Port Disruption, Public Safety / Security, Storm, Weather Advisory',\n", " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Ground Transportation Advisory, Individuals in Focus',\n", " 'Port Strike, Port Congestion, Port Disruption',\n", " 'Maritime Accident, Port Disruption, Public Safety / Security, Military Operations',\n", " 'Train Accident / Derailment, Train Delays / Disruption, Hazmat Response',\n", " 'Tropical Cyclone / Storm, Power Outage, Landslide, Public Safety / Security, Flooding',\n", " 'Flight Delays / Cancellations, Non-industrial Fire, Roadway Closure / Disruption',\n", " 'Miscellaneous Events, Ground Transportation Advisory, Network Disruption, Death / Injury',\n", " 'Death / Injury, Protest / Riot, Ground Transportation Advisory, Kidnap / Detention',\n", " 'Ground Transportation Advisory, Protest / Riot',\n", " 'Aviation Advisory, Ground Transportation Advisory, Network Disruption, Maritime Advisory, Miscellaneous Events',\n", " 'Weather Advisory, Hazmat Response, Network Disruption',\n", " 'Ice Storm',\n", " 'Roadway Closure / Disruption, Ground Transportation Advisory, Storm, Weather Advisory'],\n", " dtype=object)" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Category'].unique()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Understanding \"Severity\"" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "severity_counts = data['Severity'].value_counts()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAH2CAYAAAChsP9pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACE1klEQVR4nO3dd3gU5drH8e/W9N57Qgu9dwQBQURRsBzrEbtgO4p6FBTFcnztelTUY0fFghWUqoKgIL1LJ7T03pPNZnfm/WPJQkhCTTKb7P255BJmd2fv3ZTfzj3PPI9OVVUVIYQQQmhKr3UBQgghhJBAFkIIIVyCBLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyMItuMP8Ny3hNbpCja5QgxD1kUAWjWbq1KkkJyc3+GfIkCGa1LV06VIeffTRU96vsLCQ559/nlGjRtG1a1f69+/PTTfdxK+//toMVZ6Z5ORk3nrrLQCsViv/93//x88//3xO+3zrrbfqfM26d+/OmDFjePHFFykqKqp1/6lTpzJy5MjT3v++ffu47rrrTnm/H374geTkZNLS0s7qeU7mnXfe4aOPPnL+u+Y1C+EKjFoXIFqXsLAwZs6cWe9tJpOpmatxmDVr1invY7FYuOGGG7Db7dx5550kJCRQWlrKokWLuPfee3nssce46aabmr7Y0zRnzhwiIyMByMnJ4dNPP+X5559vtH2D40iyoqKC7du388EHH7Bs2TK++uorgoODAbj77ruZOHHiae938eLFbN68+ZT3Gz58OHPmzCE8PPzsXsBJvPHGG9x7773Of//jH/9g6NChjf48QpwNCWTRqMxmMz179tS6jDO2ePFiUlJSWLJkCYmJic7to0aNwmKx8Oabb/LPf/4Tg8GgXZHHacr3+MR9DxkyhMGDB3P99dfz2muv8Z///AeA+Pj4Jnn+4OBgZ+g3tcjISOcHGyG0Ji1r0ez+97//0bVrV4qLi2ttnzVrFl26dCE/Px+AjIwMHnzwQfr370+PHj246aab2Llzp/P+aWlpJCcns2jRIv71r3/Rq1cv+vfvz/Tp06moqADgxhtvZN26daxbt47k5GTWrl1bb015eXkAKIpS57ZJkyZx9913Y7Vandv27t3LpEmT6N27N7179+aee+4hNTUVgKqqKvr06cOLL75Yaz82m42BAwc6Aw3g22+/5ZJLLqFr164MHz6ct956C7vd7rx96tSp3HTTTcyYMYPevXtz8cUXY7fbnS3rtLQ0LrjgAgCmTZvGyJEjWb58OcnJyaxcubLW82/YsIHk5GQ2btxY73twMt27d+fCCy9k7ty5VFZWOms7vpX8999/c9NNN9GnTx969erFzTffzJYtWwBHa7imc3J8uz05OZmZM2dyxRVX0L17d2bOnFmnZV1jzpw5DB8+nO7du9f5Xmio9XzicwHMnDnT+ff6Hrdw4UKuuOIKevXqxZAhQ3jyySdrfa++9dZbjB49muXLl3PppZfStWtXxowZw9y5c8/4fRXieBLIotHZbLZ6/9QMprn00kux2Wz88ssvtR63YMECzjvvPEJCQigoKODaa69lx44dPPHEE7z66qsoisINN9xASkpKrcfNmDGDmJgY3nnnHW677Ta+++473n33XedtnTt3pnPnzsyZM4cuXbrUW/PQoUMxGo3cdNNNzJw5ky1btlBdXQ04wui2227Dy8sLgIMHD3LttdeSn5/Piy++yHPPPUdqairXXXcd+fn5eHh4MGbMGBYtWlRrANGqVasoLCxk/PjxALz33ns88cQTDBo0iP/973/ccMMNfPDBBzzxxBO1atuwYQOZmZm8/fbbPPTQQ7WO0sPDw51Bd9dddzFz5kyGDh1KeHg48+bNq7WfuXPnkpiYSJ8+fU7jq1jXkCFDqK6uZvv27XVuKysr4/bbbycoKIi33nqL119/ncrKSm677TZKS0v5xz/+wVVXXQU4gvUf//iH87H/+9//uPTSS3nzzTcZM2ZMvc+dlZXFzJkzeeCBB3jttdcoLi7mxhtvJCMj47Trr2nFX3XVVc6/n+idd97hwQcfpGfPnrz55pvcc889LFmyhBtvvBGLxeK8X25uLs888wwTJ07k/fffJzY2lkcffbTO96YQZ0Ja1qJRpaenNxh6jzzyCLfddhsxMTH069eP+fPnO38xHzlyhG3btvH6668D8Omnn1JUVMRXX31FTEwMAMOGDePiiy/mjTfe4M0333Tu9/zzz3cO2ho0aBCrVq1i+fLlPPTQQ7Rr1w5fX1/g5G3e5ORkXn/9dZ5++mneeust3nrrLTw9Penbty9XXXUVY8eOdd535syZeHl5MWvWLOe+Bw0axKhRo/jwww959NFHGT9+PN9//z0bN26kb9++gOMDR5s2bejWrRulpaW88847XHPNNUyfPh2A8847j8DAQKZPn84tt9xC+/btAccHnGeeeabe1qrZbKZTp06Ao4XcuXNnAC6//HI+//xzysvL8fHxwWKxsGjRIu68884G34NTCQ0NBY51E463f/9+CgsLmThxIr179wagTZs2zJkzh/Ly8lqt4RO/Dn379uWWW25x/ru+wLfb7bz99tt0794dgB49ejBq1Cg+//zz0xqwd/zzRkZG1vu9UFxczLvvvsvVV1/Nk08+6dzeoUMHbrjhBr7//ntuuOEGACorK3nuuecYNGgQAImJiYwYMYIVK1bQtm3b06pHiBNJIItGFRYW5jw6PVFUVJTz75dddhkzZswgNzeXsLAwFixYgK+vr7MFunr1ajp16kRERAQ2mw0AvV7PsGHD+Omnn2rt98RfrpGRkaSnp59x7RdeeCEjRoxgzZo1/PXXX6xdu5a//vqLlStXsmjRIt544w10Oh1r1qyhf//+eHp6Omvz9fWlb9++/PXXXwD079+f6OhoFixYQN++famqquK3335zBuLmzZuxWCyMHDnSuQ/A+fpXrVrlDOTAwMAzPs955ZVX8t577/Hrr78yYcIEfv31VyoqKpgwYcIZvy+no3379gQHBzN58mQuuugihg4dypAhQ/j3v/99ysfWfKA4mbi4OGcYg+P7rGfPnqxfv/6c6j7eli1bsFqtjBs3rtb2vn37EhMTw7p165yBDLW/72q+PjWnSoQ4GxLIolGZzWa6det2yvtddNFFPPvssyxatIiJEyeyYMECxowZg6enJwBFRUUcPny4waPtmvOYgLOVXEOv15/1taYmk4mhQ4c6R95mZ2fzn//8hyVLlrB8+XJGjBhBUVERCxcuZOHChXUeXzMYSafTcemll/Ltt98yffp0fv/9dyoqKrj00kudrw9o8Ig1JyfH+XcfH58zfh0JCQn079+fuXPnMmHCBObOncvgwYOJiIg4433VyMrKAqj3w4GPjw9ffPEF7777LosWLWLOnDl4enoyfvx4pk+fjtlsbnC/3t7ep3zumqPz44WEhJCZmXkGr+Dkas4T1/dcoaGhlJaW1tp2/PedXu84+yfXOItzIYEsNOHn58fIkSNZtGgRAwcOZN++fbXOnfr5+dG/f38eeeSReh9/sl/wZ+Paa68lKSmpzqVDERERPPfcc/zyyy/s37+fESNG4Ofnx+DBg2u1WWsYjcd+pMaPH897773H2rVrWbhwIf369XO23/39/QF45ZVXao3qrlFfKJypK6+8kscee4yUlBRWr17NK6+8ck77++uvv/D29m7wQ1KbNm14+eWXsdvtbNu2jXnz5vHVV18RHx/P7bfffk7PfeIAQHCcxz3+AxA4Wts159jLy8vP6DkCAgIAR0u+TZs2dZ4rLi7ujOsW4kzIoC6hmfHjx7Nlyxa++uoroqOj6d+/v/O2/v37c/DgQZKSkujWrZvzz7x58/juu+/O6PKjmqOXk4mJiWHx4sXOkdLHO3jwIOA4l1hT2/79++nUqZOzrq5duzJr1qxak4i0bduWLl26sGDBAlasWMFll13mvK1Hjx6YTCays7NrvT6j0chrr71WZ4TxyTT0XowZMwYvLy+eeuopfHx8GDVq1Gnv80S7du1i6dKlXHnllXh4eNS5ffHixQwcOJDc3FwMBgO9evXiqaeewt/f3znw6nS+Dg05ePAgR44ccf47MzOTzZs3M2DAAADnufyao3ig3tHkJ6uhR48emM1m5s+fX2v7hg0byMjIcJ4bF6KpyBGyaFRWq9V5qUt9kpOTna2+oUOHEhgYyJw5c7j99tudRzkAN998M/PmzePmm2/m1ltvJSgoiIULF/LNN98wbdq0M6rJ39+fzZs3s3r1ajp37uw8EjrelClTWLt2LVdddRUTJ06kV69e6PV6tm/fzscff8ywYcMYNmwY4JgQ49prr2XSpElcd911eHh4MGfOHH777bdag83A8aHjxRdfxGg0ctFFFzm3BwUFcfvtt/PGG29QVlbGgAEDyM7Odp6n7tix42m/Pj8/P8Bx3r1t27b06NEDcLRUL7nkEubMmcN111132l2Fmq+fqqqUl5ezfft2Zs2aRWJiIvfff3+9j+nduzeKonDPPfdw55134uPjw6JFiygtLeXCCy8EjnUF5s+fT48ePc7oiNPDw4O77rqLKVOmYLfbeeONNwgMDHRO1nL++efz/PPP8+STT3Lbbbc5R6Wf2O739/dn06ZNrF+/3jnYrkZgYCB33nknb7/9NiaTiREjRpCWlsYbb7xBu3btuPzyy0+7XiHOhgSyaFS5ublcc801Dd4+d+5c5yAeo9HIJZdcwueff17r6BEcreKvv/6aV199laeeeoqqqioSExN57rnnnJfPnK4bbriBv//+mzvuuIPnn3/eeR73eLGxsfz444+89957/Pzzz3zwwQeoqkpCQgK33XYbEydOdH5g6NixI1988QWvv/46jzzyCKqq0qFDB95++23nNcE1xo0bx0svveRsdR/vgQceICwsjC+//JIPP/yQgIAABg0axIMPPljnvifj6+vLLbfcwpw5c1ixYgWrVq1yzopWM+vVFVdccdr7O/7r5+npSVxcHNdddx23336780j0ROHh4Xz44Ye88cYbPP7441RWVtK+fXveeustBg4cCDgGzc2bN4+pU6dy1VVX8dRTT512TZ07d2bMmDE89dRTlJaWMmjQIB577DFnyzopKYkXX3yRd999lzvvvJO2bdvy7LPP8uyzz9baz+TJk3nnnXe444476h0DcN999xEaGsrs2bOZM2cOgYGBXHTRRTzwwAOnda5biHOhU2UUghCt1owZM9i6datMWiFECyBHyEK0Qp999hkHDhzgm2++4eWXX9a6HCHEaZBAFqIV2rBhA3/++Sc33XRTnetqhRCuSVrWQgghhAuQy56EEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOECJJCFEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOECJJCFEEIIFyCBLIQQQrgAo9YFCCEcbHYFVQWDXoderzvpfa3VdhRVBcd/AKiqevT/x+5nMuoxmwwn3ZeqqtgVx4MMeh063cmfWwjRNCSQhWgGdsURtkZD7aZUaYWVghIL+UUWCkosFJZaKCqtotxSTaXFRkWVjUqLjcoqGxVVjm2VVjuKojbwTHXpdOBhMuBpNuLpUfv/3h5GAnw9CPTzIMjPgyB/T0IDvAjy98DfxwOT8Vi9iqKiqKqEthBNRKeq6un/ZAshGqSqKna7iv64I9xqm53M/AqOZJWQnlNGem452QXl5BdbyC+2YLMrGld9ct6eRkICvIgK9SEqxIfoMB9iwnyJDfcl2N/TGcx2xfE6DHo5CybE2ZJAFuIs1LR5a454LVU29qcXcTC9hPTcMsefnDLyiitprT9hRoOeyBBvokJ9iI/wo01MAB3ig4gI9kan06GoKspx75EQ4uQkkIU4DTa7cix8rTZS0orZe6SQ/WlF7E8tIjO/vNUG75nyNBtIig6gTUzA0ZAOJC7cD4NBj11R0HHqc+RCuCMJZCHqcXwAZ+SVsWVvLjsPFrDvSKGE71kwGvS0jQ2ga5sQurYNpUubELw8jCiKiooqrW4hkEAWAqgdwFn55WzZm8u2/XlsT8mjqLRK4+paH70OEqMD6NImhK5tQ+jeNhRfb7NzsJocQQt3JIEs3JJ69PymwaCnpNzK2h2ZbN2by/aUfApKLFqX55biI/3o2ymCAV0i6ZgQjF6vq/VBSYjWTgJZuI3jj75Ss0tZvT2TtTuy2JdaKC1oF+PjZaJXchj9OkXSv3MEvt5m7HYFvVxyJVoxCWTRqtkVBf3REb87DuSzZnsW63ZmkV1QoXVp4jTpddA+Loh+nSMY1iuGqFBf7HYFgxw5i1ZGAlm0OqqqoqqOCTG27c/j942prNmeSbnFpnVpohEkRfszrFcsw3vHEhroJW1t0WpIIItWo+ao6WBGMUvXp/LnlnQ5H9zKJScEMaxnDOf3jiXA10PCWbRoEsiiRasJ4byiSpauP8LyTWmk5ZRpXZZoZnoddG0bysi+cQztGYPRqEcHcr5ZtCgSyKLFqWlJq6is3pbJgr8O8ndKvtZlCRfh42ViRJ9YLhmSRGy4nxw1ixZDAlm0GDVHwwXFFhasOsgv6w7LNcLipDomBjF2UCJDe8ZgMMhRs3BtEsjC5dUE8eY9OcxfdZANu7LPaLUjIXy8TIzsE8e485KIDvPFrigyO5hwORLIwmUpikq1XWHRXwdZuOoQmfnlWpckWjidDvp2jOCqC9rTOSlE2tnCpUggC5eiqCo6oNxiY+7y/SxYdZCyymqtyxKtUPu4QK4c0Z5B3aJQVVWuaxaak0AWLkFRHOsI5xdX8t2yffy67ghVVrvWZQk3EBnizYTz2zG6fzxGg17m0RaakY+EQlM1C9tn5JXx2pebuO0/vzJ/5UEJY9FssvIr+N8P27jl2V/45re9WKw27C1wjMLIkSNJTk7mk08+qff2J598kuTkZN56661zeo5zefzp2rhxIxs2bGjy53E1EshCE8rRxkxmXjn/N2sdd7+0jN83prbIX4SidSgpt/LFkt3c+uwv/Lh8P9ZqO3a7onVZZ8RkMrFkyZI62202G7/88kuLGWF+/fXXc+TIEa3LaHZGrQsQ7qXmDElBsYXPF+1i+cZUJIOFKymtqObTBTuZ90cK/xjZnouHJKGDFnGOedCgQfz5559kZWURGRnp3L5mzRq8vb3x8vLSsDpxKq7/HSZaDUVRKaus5oO5f3PH//3Gsg0SxsJ1FZVW8cG8v7nj/37lt/VHUBTV5Y+Yu3fvTnR0NIsXL661feHChYwdO7bWEfLmzZuZOHEiffr0YcCAAUybNo3CwkLn7aWlpTz66KP07duXgQMH1tsK37RpEzfccAPdu3dn+PDhPP3005SVHZspb+TIkbz44otcfPHFDBgwgHXr1lFcXMz06dMZOnQoXbp0YdCgQUyfPp3KykoAkpOTAZg2bRpTp04FIDs7mylTptC3b18GDBjA5MmTOXToUKO9b65CAlk0ObuiYLHa+HLJbm77z6/8vPIANhf/xSZEjbwiCzO/3crkF5ayalsGgEsH89ixY2sFstVq5bfffuOSSy5xbtu2bRs33ngj7du355tvvuGNN95g69at3HbbbdjtjvEbDzzwANu2beN///sfn3zyCcuXLyc9Pd25j927d3PLLbcwdOhQfvrpJ1555RV27NjBrbfeyvFjhWfPns306dP58MMP6dmzJ1OnTmXnzp3MnDmTJUuWMG3aNObOncucOXMAWLlyJQCPPfYYjz/+OBUVFdx4443OfX3++ecEBQVx9dVXk52d3XRvpAakZS2ajN2uoNPpWLjqEF//uoeScqvWJQlx1jLzy3l59kYWrDrI5Mu7kxQTgKKq6F3svOzYsWP56KOPyM7OJiIiglWrVhEcHEznzp2d9/n4449JTk7miSeeAKBt27a89tprjB8/npUrVxIXF8fKlSuZNWsWffv2BeDVV19lxIgRzn189NFHDBkyhMmTJwOQmJjIq6++yqhRo1i3bh0DBgwA4Pzzz2fw4MHOxw0ZMoR+/fo5j4RjY2OZPXs2e/fuBSAsLAwAPz8//Pz8+PbbbykpKeHll1/GaHRE1nPPPcfatWv55ptvuO+++5rkfdSCBLJodDWXMO0+XMi732/lcFap1iUJ0Wh2HizggdeXc0G/eG4e1wUfLxMGF7pUqmvXrsTFxbFkyRImTpzIwoULax0dA+zdu5chQ4bU2taxY0f8/PzYs2ePs33crVs35+2hoaHExcU5/71z504OHz5Mr1696tSQkpLiDOSEhIRat11//fUsW7aMH3/8kUOHDrF//37S0tJo06ZNva9n586dFBcX069fv1rbq6qqSElJOdXb0aJIIItGpSgqxWVVvD9vOyu3ZGhdjhBNQlHh13VHWLUtg2tGdWD8sLao4DKzftW0ra+55hqWLl3Kt99+W+v2hqafUFUVk8nkPNesKLVb8zVHqDW3XXrppc4j5OMFBwc7/+7p6VnrMZMmTWLfvn2MGzeOiy++mC5dujiP1OujKApJSUm8++67dW7z9vZu8HEtkWt894gWz2ZXsNsVvv99H3c+/5uEsXALFRYbn8zfyd0vLWPr3lwAl5hnfezYsWzatInvv/+euLg42rZtW+v25ORkNm7cWGvb7t27KSsro23btnTq1AlwDNqqUVJSUutSpPbt27N//34SEhKcf2w2G88//zyZmZn11rVr1y7++OMP3njjDR5++GEuu+wy4uPjOXLkSIMfEjp06EBGRgZ+fn7O54mOjubVV19l/fr1Z/X+uCoJZHFOan75bNufx90vLeOzhbuwyKQews1k5JXz1Idr+L9Z6yitsDonvNFKp06dSEhI4NVXX63Trga45ZZb2LNnD88++ywpKSmsXbuWhx9+mM6dOzNo0CDi4+O56KKLeOaZZ/jrr7/Yu3cvjzzyCFbrsXEgt956Kzt37uTpp58mJSWFzZs389BDD3Ho0CESExPrrSs0NBSj0ciiRYtITU1l+/btPPDAA+Tm5tbat7e3NykpKRQWFnLZZZcREBDAv/71L7Zu3UpKSgpTp07ljz/+cJ6Hbi0kkMVZs9sVKqtsvDJ7AzPeX01Gniz+INzb6u2ZTHphKcvWpwJoGsxjx46lrKyMiy++uM5tPXr04MMPP+Tvv/9mwoQJPPDAA/Tq1YtPPvkEk8kEwIsvvsj555/PlClTuOGGG2jXrh1du3Z17qNnz558+OGH7Nq1i8svv5y77rqLpKQkZs2ahdlsrremiIgIXnjhBZYtW8bFF1/M/fffT0REBDfffDN///2383633nors2fPZtq0afj5+TF79myCgoK47bbbuOqqq8jOzubjjz+uc+Tf0slc1uKM1Yws/WtbBu9+v42iMlmTWIgTdW8fyv3X9CI0wEvmxxanRQJZnBG7XaGiysbMb7fw17b6zxMJIRw8zAZuGNPx6KAvVdZgFiclgSxOS82lTH9sTuO9H7fLNcVCnIH2cYFMua43MWG+crQsGiSBLE7Jblcot1Tz5pwtrN2RpXU5QrRIJqOemy7pzPhhbZ0fcIU4ngSyOKVNe3J47cuNFJfJUbEQ56pPx3AevL4PPp7GFrFghWg+EsiiXjVz9c46uuqNfJcI0XgCfT2Ycl0veneM0LoU4UIkkEUddkUhr8jCC5+uZ39akdblCNFqXXpeG269rEuLWd5RNC0JZOGkqio6nY7lm9J457utVFbZtC5JiFYvMcqfRyf2JTpUBny5OwlkATha1DZF5e1vt/L7xlStyxHCrXiYDNzzjx6M6BPn/GAs3I8EssBuV8grquSZj9ZyJFtWZhJCKxcPTuTOCd1Ah1yz7IYkkN2cqqps3pvLS59voLyyWutyhHB7yfFBPH5Lf/x9zHJe2c1IILupmukvv1u2j88X7sQFFqgRQhwV6OfB4zf3p0N8kJxXdiMSyG7IrijY7Sr//Xozf25J17ocIUQ9jAYdd17ejbGDkuS8spuQQHYzdrtCYWkVz3y0hoMZJVqXI4Q4hYsGJnDXlT0A5Gi5lZNAdiOKorL7cAHPfbJO5qIWogXplRzG4zf3x2jQy3nlVkwC2U2oqspf2zJ49ctNVNu0XTxdCHHmkqL9eebOwfh6mzBKKLdKEshuYt4fKXz0098yBaYQLVhYoBfPTBpEVIiPHCm3QhLIrVjNQJCPfvqbuStStC5HCNEIfDyNTL91AJ2TQuSccisjgdxKKYqKqqq89tUm/tgsI6mFaE2MBh3/uqYXI/rEaV2KaESaB/KNN97IunXrGrx99erVBAcHn3QfGzduRFVV+vbt29jltUh2RcFarfCfj9eybX+e1uUIIZrITZd05qqR7bUuQzQSo9YFAIwdO5bHH3+83tuCgoJO+fjrr7+e559/XgIZx2VN5RYbj7+7ikOZclmTEK3Zpwt2Ulll48axnbQuRTQClwhkT09PwsLCtC6jxbPbFcoqq5n69krScsq0LkcI0Qy++W0v1mo7t13WVetSxDly+WF6W7dupXPnznz88cfOba+99hp9+vQhNTWV5ORkAKZNm8bUqVNJS0sjOTmZ9957jyFDhnDBBRdQVlZGaWkpTzzxBAMHDqRPnz5MnDiR7du3O/f51ltvcfPNNzNz5kwGDx5Mr169ePLJJ8nMzGTSpEn06NGD0aNHs3z5cudjrFYrL7/8MkOHDqVXr15cffXVrFy5stnem+PZ7Qol5VYeeetPCWMh3MzcFSm8+8M2wDGYU7RMLh/IPXr0YNKkSbz55pscOXKEDRs28MEHH/D0008TFxfnDMDHHnusVtv7xx9/5NNPP+W///0vPj4+3HHHHaSmpvLee+/xzTff0LNnT6677jp27tzpfMyGDRs4ePAgX3zxBdOnT2fOnDlcddVVjB07lh9++IG2bdsydepU5zf8tGnTWLVqFa+88go//vgjY8eOZfLkybVCuznY7ArFZVYemfknGXnlzfrcQgjXsHDVQd6csxmQUG6pXKJl/fPPP7NkyZI620eNGsXLL7/MPffcwx9//MH06dNJS0tjwoQJjBs3DsDZ6vbz88PPz4/i4mLAcV65Xbt2gGNg2JYtW1izZg2BgYEAPPjgg2zatInPPvuMF154AQBFUXj66afx9fUlKSmJl19+mYEDBzJhwgQArrvuOn7//Xdyc3OprKxk/vz5zJ07l06dHOdvbrnlFnbv3s1HH33E8OHDm+rtqqVmKsxpb68ku6CiWZ5TCOGafl13hGqbwpTreqPiWEBGtBwuEcgjR47k4YcfrrPd29sbAKPRyMsvv8xll11GSEgITzzxxCn3mZCQ4Pz7jh07UFWVESNG1LqP1WqlqqrK+e+QkBB8fX1rPX98fLzz356ens7H1RxZX3/99bX2WV1djb+//ynrawx2u0J+iYWpM1eSW1TZLM8phHBtyzelYbXZefTGfqjIohQtiUsEso+PT60Arc/evXtRFIXc3Fz27NlDr169Tnr/mvAEx5Gvr68vP/zwQ537mc1m599NJlOd2/UNLBJe0xL64osv8PHxOa3HNCa7XSGv2MKjM/8kv9jS5M8nhGg5/tqWyWtfbeKh63trXYo4Ay5/DhkgJyeHGTNmMHnyZMaNG8ejjz5KRcXpt2c7dOhAWVkZ1dXVJCQkOP988MEHLF269Kxqat/ece1fbm5urX3+8MMP9QZ/Y7LbFUorrDz2zkoJYyFEvVZsSuPd77dpXYY4Ay4RyBaLhdzc3Hr/WK1WHnvsMcLDw5k8eTKPPfYY5eXlzvO+4Ggtp6SkUFhYWO/+hw4dSqdOnZgyZQpr1qzh8OHDPP/8886BWmejffv2jBgxghkzZrBs2TJSU1P54IMPeO+992q1uRubXVGwWO08/u5f5BRKm1oI0bBFqw/x6YKdp76jcAku0bJetGgRixYtqve2++67j7/++os5c+ZgNpsxm8088cQT3H///YwcOZLhw4dz66238uGHH5KSksL06dPr7MNgMPDxxx/z8ssv88ADD1BZWUnbtm2ZOXMmgwYNOuu6X3/9dV5//XWefPJJiouLiY+P57nnnuPyyy8/632ejKKo2OwqT76/miPZpU3yHEKI1uW7Zfvw8TLJjF4tgOZTZ4rTUzM39VMfrmHL3lytyxFCtDB3X9mdiwYlyiAvF+YSLWtxcjWfmV6avUHCWAhxVt79YRt/bE5HUeQYzFVJILcAOp2Ot7/byl/bMrUuRQjRQqkqvP7VJrbtz8WuKFqXI+ohgdwCfL5oF7+sPax1GUKIFs6uqDz/6Xoy88qx2yWUXY0EsgtTFJVlG47wzW97tS5FCNFKVFhszHh/NeUWmxwpuxgJZBdltyvsPlzAW99s1boUIUQrk1NYyTMfrkFRQJFxvS5DAtkFqXY7BoOesABPPEzyJRJCNL49Rwp57cuNMt+1C5Hf9i5GURV0BgNpP8wlxM/MJ9NHkxDlp3VZQohWaOXWDD5bKBOHuAoJZBejQ4eqKIQM6M++N97CUFXJG/cPY0j3KK1LE0K0Qt8u3cfS9UfkcigXIBODuJgvtv7I4aJ0Hhl8J1TbOPD+R8RMuBTvuDjmLNvPF4t3a12iEKKVMRr0vPKvoSRG+WMwyHGaViSQXYSiKKxN28zrqz8EIMw7hBdGPYqvhw+HZ3+JX4cOBA/ox4Zd2Tzz0VqNqxVCtDZhQV689dAIvDyM6PVyXlkL8lHIBdgVO+mlWbyz7jPnttyKfCbNf4wDRakkTvwntrIyMub+RL/Okfzv0ZF4muVLJ4RoPLmFlbz0+QZkjJd25Le6xhRVocpu5cU/36XKbq11m02xMe3XF1h2YBXhI4fj16kjBz+eRVSwF7OeuJDoMJ8G9iqEEGdu054cvvxlD9I41YYEssb0Oj1vrZlFTnleg/f53/rZvL/xK3zatSV6/KUc/PBjzHYrbz90Pn07RTRjtUKI1m7Or3vYvDdXZvLSgJxD1pCiKvyWspIPN351WvdvF5TIjOH3Y0LP4dlfEnHhKDyjopi9eA/fLtvXxNUKIdyFn7eJtx4eQaCfBwa9HLc1FwlkjdgVO9nleTyy5Dms9urTfpyv2ZuXRj9OqG8w6fN+xjsulsBePVm5NYOXPt/QhBULIdxJ+7hAXrpvKEYZdd1s5J3WiAq8/tcHZxTGAGXWCu5e8Dhbs3YRM/5SFJuN7F9+Y2jPGN56aDgmo3xJhRDnbl9qEbPmy6QhzUl+e2vki60/cLgo/awf/9yKN/lhxyKC+vTGr1Myqd9+T0KEL7OeGE1YoGcjViqEcFc//ZnC3yl5cj65mUggNzO7Ymdb1i4W7v39nPf19d8/8erqD/GIiiJy7BhS53yLt17hvUdH0r1daCNUK4RwZ6oKr365EatNkZm8moEEcjNSVIVKm4WZa2eh0jjf3OvTt/DQL89iNeqIu+YfZC/5FVt+Ps/eMZBLz2vTKM8hhHBfeUUW3v52i0wW0gwkkJuRXqdn5ppZFFlKGnW/mWW5TPp5KqmlWcRcPp7SPXsp27uXO8Z34f5rejbqcwkh3M+Kzen8uSVd1k9uYhLIzURRFRbvW86mzL+bZP9WxcbDS/7DysPrCBt2Huggf/VaRvVP4NX7hyFjvYQQ5+Lt77ZSUmaVUG5C8mu6GdgVO1mluXy+9Ycmf64313zCJ1u+w7dDe3zbtyNr8S+0jw3g4ycuJMjPo8mfXwjROpVXVvPKlxvluuQmJO9sM9Dr9MxcO4vqM7zE6Wwt3vc7Ty1/A32gP2Ejzidr8S/4m3V8OG0kHRODmqUGIUTrs21fHgtWHcQuA7yahARyE7MrCr+m/Mn+gkPN+ry78/Zz98InKLZXEDl2DPmr16KWlPDiXYO5cEBCs9YihGg9Plu4k9LyKhl13QQkkJuQoqqUV1fw5ba5mjx/SVUpd/88nV25+wkfcT6V6elUHD7CvVd1Z/IV3TWpSQjRslVYbLzz/TYZdd0EJJCbkF6n45NNc6iortSsBgWFp35/jQV7lhLQvRt6k4nibX9zyZAkXrjnPOR0kBDiTK3ensm6HVkyYUgjk1/HTcSu2NmevZtVR1xjfulPt3zHG2s+xiM6Ep+kBPLXrKVzUjAfPTYaP2+T1uUJIVqYd3/Yis2uyFKNjUgCuYmoqHyw4Uuty6jlr9SN/PvX57F5mgjq24eCNWsJ9jHy8eOjaBsToHV5QogWJK/IwqcLdmldRqsigdwEFFXl+x2LyCrL1bqUOtJKMpk0/3GyKvIJGTSQkl270VsqefW+8zi/V4zW5QkhWpAFqw6Qkl4sretGIoHcyOyKQk55HvN2/6J1KQ2y2Cw8sOgp1qRuJqB7N6qLCrHm5fHQ9b25eVxnrcsTQrQQigpvztmMTicDvBqDrIfcBJ7+/XV25OzVuozTclnHC7m+62VUFxVRXVyCb5skNu/J4cn3V2tdmnABqqpQfGQtRYdWU11RgNHDF5+IzoR0uBCD6diqYhX5B8nfs4iqkkz0Ri98I7sQ2nEMemP9K49ZitI4smomEd2vIiCub63bCg+spOjQKmyWYsy+4YQkj8E3otOpa1XsHFk1k9COF+MT1r7O7Tk7fqLo4Eo6jHup1vbKwsPk7V6EpTAVvdGMT0QnQjuOxejhdzpvEQAZGz5HbzQT2fOaWttLM/8mb9d87NUW/GN7E9Z5HDrdseOgnB0/o9iqiOxxVa3HFR9ZT1nWdmL633raNWjpnqt6MLp/PAZZO/mcyLvXiOyKnT8OrW0xYQzw0+5feO6Pt9D7++EVFUXJ7j30Sg7ng2kX4OVh1Lo8obHClBXk/D0Pn/BORPe9iaA2wyhJ20Tmxs+dg3mqSrNIX/sBOr2RqN7/JKTDKErSN5O56at696nYbWRtnQNq3TZn4YE/yN01H//YPkT3nYjJO4SMDZ9SWXDwlLXm71uK0TOw3jCuyD9A0cFVdbZXFh4hbfX/UKoriex5DRE9/kF1eQGpq97GfhpXR6iqQs6OnyjL2l7nNltVGVlbvsIvuieRPa6iNH0zxUfWOW+vriigJG0DIR1G13msf1xfbJYSio+sP2UNruCLxbuplrb1OZNAbkQ2xc7nW77Xuowztj1nD/ctmkEZVvw6tKd07z7CAz2ZNX0UcRG+WpcnNKKqCgUpywmIH0BYp7H4hLUnMHEwEd0mUJG3j6riNABK0zcDEN33JnzCkwmI709ox4soz9lFdUVhnf3m71mCUm2ps12xV5O/bylBbYYR0mEUPuEdierzTzwDYsnf+9tJa7VZSihMWU5I+wvq7tdWRfbWbzB6+te5rWD/MvRGT2IHTsIvuju+EZ2JGXArqqJQmLLipM9ZVZJJ2ur3KD68Fp2+7pUKlsLD6HQGxxF+ZFf8ontSkbfPeXveniUExA/A5FV3QKVOpyO43Ujydi9CaaYZ/s5FUVkVX/+yB0UarudEArmRKKrCT7t/pbiqVOtSzkpBZRGT5k9jf8Fh/Dq0x5KZhRk7b045n4FdI7UuT2hAsVXhH9Mb/5hetbabfcMBqK7Id9zPbkOnN6AzHAslg8kbAHt1ea3HVhYcoujQKsK7TqjzfJbCIyjVlfhGdnFu0+l0+EZ1pSI/5aTBVHjgD4xegXgGxta5LXfXAgwefvif0BoHsJbl4BWchMHs7dymN5jxDIqjPOfkI4iztnyNqqrEn3cvBo/6P7jq9Abn+VWd3uBYYBiwFKdTnrOH4HYjGty/T0QnVMVGSWrLOEr+6c8D5BdbZAavc3BWgfzTTz9x9dVX07NnT3r16sWVV17J119/3di1tRiqqlJRXcn8PSf/FO/qFEXh8aUv8cv+FXjFRGOvrEQpL2PaxL5cd2Gy1uWJZmYweRHedTxewYm1tpdl7QDA7Ov4oBYQ1w+A3J3zsVvLqSrNIn/fb5j9IvHwj3Y+TrFbydr6DcHtRuLhH1Xn+axlOY79+oTV2m7yDgVVobo8v8FaS9I34xfVrc728ty9lKRtJLLH1UDdgUcGsw/VlXWP4qvL86muKGjw+QAie15L/JC7630tAB4BsSg2C2VZO6iuLKY8Z7fzvczbtZDgdsMxmLwa3L/eYMInohMlRzsQrq7apvDxT3/LDF7n4IxPEn733Xc899xzPP744/Tp0wdVVVm1ahX/+c9/yMvL4957722KOl3edzsWUmmr24ZriT7c+DX78g8xuc8NqFVWqgsLue7CZNrEBPDcJ+tOvQPRalUWHqFg/+/4RHTCw98RyB7+kYR2upic7XMpOrgSAKNXEHGD76o1gClv1yL0BjPB7UZgsxTX2bdy9OdHb6y9KlnNv5UGfr6qSrOxV5XiGRhXa7u9upLsrd8R0uFCzL5h9T42IK4v2du+J2fHTwS3PR/QU3jwT6xlOaiK/aTvRUNBXMPkFUB41yvI2vI1ir0av6huBCQMpjx3L9ayHKL73UzxkfUUHvwTg8mbsC6X4hlQ+9JDz4A4SjO2otgsDQ6QcyUrt2Yw4XAB7WIDZYDXWTjjQP7yyy+58sorueqqY6MC27RpQ3Z2Np999pnbBbKiqhRVFvPr/j+0LqVRrTi0hsNFaTwz4kHMHoFU5eQysGsU7z4ygin/XYHFKgM43E1lwSHS13+CyTv46BGnQ8H+38nbvYiAhMH4RXXFbi0nf99S0ta8T9zguzB6+FGRl0LxkbXEn3efo3Vbj1Ne8NHApTU1R7Im7+Ba23N3/IzRK4CgNkMb3GVA/AAUWxV5e345+mFCh29UNwLiB1DcCK3igPh++Mf1QVXs6A0mVFUhb9dCQjqMpro8l5wd84jpfytVxRlkrJ9F4ohH0RuO/Vo2eQc5ugOVxXj4uX4gA7w/929evX+Y1mW0SGf8EUav17N582aKi2t/wr3zzjuZM2cOAFarlZdffpmhQ4fSq1cvrr76alaudHxyLi8vp1evXnz5Ze1ZrGbOnMnw4cNRFMdUbB988AEXXHABPXr0YPz48fz000/O+65du5bOnTvz/vvvM2DAAK644goURSE7O5spU6bQt29fBgwYwOTJkzl06NCZvsQzez90Or7aPo9qxdakz6OFQ0VpTJ4/nTxLIZ4R4VTl5xMT5ssn0y8kMtj71DsQrUZpxhbS1ryP0TOQ2IF3YjD7AI5LjfL3/YZfTC8iuk3AO7QdftE9iB1459GBVitQbFVkbf2GoLbDMfuGoyr2Y+Grqs4j0ZrLqBRbVa3nPnbkXH8g1dyuM5id28qyd1KasYWI7lce9xyqs2b1uBHeQW2G0W7M0yQOf5g2o58gus8/sVdX1jqvfC50Oj36o+fXS9M3oyo2/OP6Upq5Ha/gJLxD2hCYNBh7dSWWosO1H3v0NTXUHXBFe48U8ueWdGwy6vqMnfER8u23386UKVMYNmwYAwYMoG/fvgwcOJBu3brh7+8YxTht2jRSUlJ45ZVXiIiI4Pfff2fy5MnO0L3ooouYP38+119/vXO/P//8M+PHj0ev1/Paa68xf/58nnzySdq0acP69et56qmnKC0t5YYbbgDAbrezYsUK5syZQ2VlJRaLhRtvvJEuXbowe/Zs9Ho9n3zyCVdffTU///wzERERjfSWHaMoClllufxxeG2j79tVVFRXcO+CJ5k69G56RXXFVlaOt5cn7/x7OP+ZtYFNe3K0LlE0sYKUFeTtWohXSBui+06sdd7Tbi1HtVfjFZRY6zFGD1/MvmFUlWZjKUrDVllIwb7fKNhXe5xF9rZvyd72LR3GvYTp6Lnj6or8WmFYXZ6PTm/A5B1Sb301Hw6U4y5TKsvcjqrYOLzitTr337dwGv6xfYjseQ2WolSqK4vwi+rmHKwGUFWSjod/485cp9ht5O35hfAul6LT6bFXlTlfp06nR2/0xH7CoNCa11QzSK6l+OqXPZzXI/rUdxS1nHEgX3TRRURGRvLZZ5+xatUqVqxwXBqQmJjI//3f/xEaGsr8+fOZO3cunTo5Lua/5ZZb2L17Nx999BHDhw/n8ssvZ+LEiaSnpxMTE8O2bds4dOgQV1xxBRUVFcyaNYvXXnuN4cOHAxAfH096ejofffSRM5ABbr31VhITEwH49ttvKSkp4eWXX8ZodLys5557jrVr1/LNN99w3333ncv7VC+9Xs8X2350i8nVX/jzHa7qcglXdRqLarNh0OmYcVt/Pl24mx+W79e6PNFEig6vIW/XAvyiexDZ8xp0+tq/MgwevuhN3lQWHCQwcZBzu91aTnV5Hp6B8XgGxhB/Xu2fP1tVKRnrZxHcfpRz0g+v4AR0BjOlmdud54NVVaUs62+8gtvUauUez+QVCEB1ZbHzcSEdRhOYOLjW/YqPrKX4yDriz7vPGeIV+QfI37ME79B2zg8a5bl7sZZmE9Tm/LN5yxpUdGgVRk9/fCO7Ao73rrrQcUSsKjaU6goM5tqjtW2WItDpMdZzaZQrS80u5Y8t6ZzXPVrOJZ+Bs5r5oWfPnvTs2RNFUdi9ezcrVqxg9uzZ3HHHHfznP/8BqHX0C1BdXe08gu7Xrx+xsbHMnz+fSZMm8dNPP9G7d28SEhLYtm0bVVVVPPTQQ+iPWxvQZrNhtVqxWI61bmrCGGDnzp0UFxfTr1+/Ws9bVVVFSkrK2bzMk7Irdg4VpbE+fWuj79tVfbdjASn5h/n34DvQ6w2oisLN4zqTFBPAq19s1Lo80chsltKj52GDCEwcjKU4vdbtJu8QjB6+hHQYTe6OeeiNHvhFd8duLadg/++g0xPUZhh6o2edAVfHn/etuU1vMBPUZhgF+5ai0xvwCkqgOHU9luI04gZNbrBOs284Rq9ALIUH8Yvq6tzvieeUy7IdlzEdX4t/TG8K9v9O5sbZBLU9H1tlEbk75+MZlIh/bG/n/apKs1EVW51BV6fLbq2gYP8yovve7NzmE96Jgv2/U5y6AWtpFnqTJ55BCbUeV1lwCK/gJPTHteNbiq9/2cPQHjI//pk4o0DOysrivffeY9KkSURGRqLX6+ncuTOdO3dm1KhRjBs3znnfL774Ah8fn1qPrwlYnU7HhAkT+Pnnn7n99ttZtGgRDzzwAHBsYMd///tf2rRpU6cGs/nYN6aHx7HRmIqikJSUxLvvvlvnMd7ejd/uMegNLXISkHO1OetvHljyDM+PehQ/Tz8Um43hvWOJj/DloTf/xGaT80atRXnOblSlGltlIal/1f25iuhxNQFxfQlKGoLB5EXhgT8oSduA3uSDd0gS0X1vqhOKpxLSYRQ6vYHiw2spTFmB2S+CmH4317n06kR+Ud0oz9lDWOdLz+j5jJ5+xA64ndydP5Ox4TMMJi/84/oSmnxh7Skut/9IdWUhbS6Ydkb7r1Gw/3e8ghLwDklybvMKiie041jydi1Ab/Imqvc/neeawTFRSkV+CqHJF53Vc2otLafMcZTcIxqjHCWfljMKZLPZzLfffktUVBR33nlnrdtqjn5DQ0MByM3NpXPnYwsVvP766+j1eu6//34ALr/8cmbOnMnXX39NeXk5Y8eOBRwjto1GIxkZGYwYceyi+c8++4z9+/fzzDPP1Ftbhw4dmDdvHn5+fgQHO34JVFdX89BDD3HRRRdx8cUXn8lLPSm7YmdHzl525u479Z1boZzyfCb9/BjPjXqEpCDH0UabmEBmTR/N/a+vIL+45QxAEQ0LiO9HQHy/U98R8I/tXeuI8lRM3sF15pQGx7nUkPYX1Dvj1skEJg2j6NBqKvIP4B1S94M8QGjyhYQmX1hnu2dgLHGD7zrp/uMGN3yEDpwyqMM6X1Lv9uC25x+93Kqussxt6PTGeic0aSm+/mUPw3rKUfLpOqOPLcHBwdx+++288cYbvP766+zatYvU1FR+//137r33XgYMGED//v0ZMWIEM2bMYNmyZaSmpvLBBx/w3nvvER8f79xXTEwMAwYM4NVXX2XUqFH4+jrOnfj5+XHttdfyxhtvMG/ePFJTU/nuu+94+eWXCQ8Pb6g0LrvsMgICAvjXv/7F1q1bSUlJYerUqfzxxx8kJzfupBYGvYE5f//cqPtsaWyKjUd/+T9+P7AaVXEcFQf4efL+oyPp0qb+wTdCNBWTVwCBSUMpTFmudSmNwjFt6R+EdBhd66i5pUnPLWPF5jRZnvE0ndVqT3PnzuWbb75h7969WCwWoqOjGTt2LJMmTcLb25vKykpef/11Fi5cSHFxMfHx8dx6661ceeWVtfYzb948HnnkET755BMGDz42AMNms/G///2PH374gZycHKKiorj66qu5/fbb0el0rF27lokTJ7J06VJiY49NlZeamspLL73E6tWrsdvtdOnShQcffJDevU//k/up2BU7+/MP8cSyVxptny3d6LZDua3n1eiPDqZTbHbem/c3C/86pG1hwq2oio0jK98itNMl+IR10Lqcc1J8ZC2lmduJHXC71qWcs+hQH9599AKZwes0yPKLZ+H5P95mc+bfWpfhUtqFJDJj2P14mB3XiqqKwi/rjjDzW/cZ9CaEqN/DN/RhiJxLPiUJ5DOgqAqZpTk8uOgZVFr222YttrDn7XUkXdcN36SgWrdV5VeQsWgfZUeK0el1BHYJJ2p0WwyeJx9y4G/2ZYxhID9+/b1z4pedB3K4/f6nKD6yAbu1As/AGEI7jcMrKP6k+7KW55G3ezGVBQdR7dWY/SIJTR6Nd+ixpfUqCw6Rve17bJZifCI6E9HtCvTGY4P+Cg+upDx7F7ED76i174q8/eTu/Jn48/7V4KxRQojG0y42kNenNO5lZK2RfFw5A3qdnrm7lrSKMD7w2RYUS93ZxeyV1aTM2kx1uZX4yzsRNaoNRduzOfzNqTsC+QUFPPXUDK6efOyStx++fJ/yI6uI7nwBUX1uAJ2etDXvYy3Pa3A/dms5qX/9D2tZDuFdLiOq9w0YPXxJW/MhFfmOS9hUxUbGxtl4BiUQ1ft6LEVHyN+39Ng+qi0U7FtGaKexdfbvHdoOo1cw+fta9mIgQrQU+9OK2HkwX84ln4IE8mlSVZWiyhJWtpAFw+ujKioFmzPZ++56bGXWeu+Ttz4de0U1bf7Zg4BOYYT0jSH+qi6U7i+g/HDRSfefs+IQ3jH+fJm5gLm7FpORlsZXX33Fo48+yvxZT9O732Bi+t+OwexNwf7lDe6nJG0jdms5Mf1vwy+6Bz7hyUT1+Sdmv3DnGrXWshzsVSWOdXrDOxKYMLDWWrOFKcvxDm2LZ0Dd5fgAQtqPpDBlBTZLycnfNCFEo/hx+X6ZJOQU5N05TSoqC/YuxX6KFWBcmSW7jLSf9xDUI5L4KzvXe5/S/QX4JARi9DnW+vVrF4zew0DJvoaXv7OVWynYlEFgd8cUpV9um8dTs1/CZrMxevRoPDzMvHTPEEYPTMInvBPlObsb3JfR07EgwPELt+t0ekzeocctiXd0jdmjI1B1eiMcnZ/YZimm6NBfhCSPafA5PAPjMHoFUnigdS0KIoSrWrcji+yCChQ5S9ogCeTTZFfsLD2wSusyzokpwJOO9w8kZmx79Kb6z51W5ZbjEVJ7IhWdXoc50IuqvIoG9128MxdVUfFPDnVu27lvFwYPI95+jv0ZjEbuv7onwwZ0xV5VUmcRgRp+0T0I61T7unG7tYLKggOYfR2Bb/IJxWD2ofjIeuzWckoztuEV7Jh0IW/Pr/jF9MLsE1pn37WeJ6o7JelbTnofIUTjUFSYu2J/PatSixoSyKfBrthZfmgNZdZyrUs5J0ZvE+aAky/hZq+yo/eoG9Z6DwP2qoZXtCo9WIhHmA8Gj2MDvxSLDb2HgUnzHyOtOAMAnV7PgO6O6QFPdwUbVVXI3vY9iq2KoKOTKOgNJiJ6XE3Bvt9I+eUZdHoDIR1GU1WaTVnmNkLaj6IseyeH/3yDIyvforyeSVw8A+OwV5VQVZp9WnUIIc7Nb+uOYLG23C5jU5NAPg0GvYGFe5dpXUbzOEk7SdfAerQA1oJKzEG1w75mV1a7lQcXP8vKw+trLcTx+gPn43uKkduqYidr89eUZW0nvMtltUZn+0Z0ou2FM2g39lliB96BwexN3u6FBCYNAZ2OzI2zCW53AUFth5Ox4VNsVWW19m3ydowuP9YGF0I0JYvVzoJVB7ErMrirPhLIp2BX7GzL2kV6SZbWpTQLvYcRpZ5PsEqVDf1JwtNeZavTBjd4GmsdVb+55mM+2/IdpSWOtbQT4yL4ZPpoEqP8699ndSVpaz+kNGMrYV3G11m9x1nz0Yn3K/IPYik8QlCb8ynP3oXJOxi/qK74RXXD5BVY57x1S1xrVoiWbuGqg+hP8uHenUkgn4JBb2DJ/hVal9FsPEK9qcqvrLVNVVSshRY8QxtepMPobcJ+wmVUHqHeKFV2bOXHRnQv2LuM79csIDo6Gk9PTzy9zPz3/qEM7Vl77dTqyiJSV72NpfAwUb1vIChpyClrz9u1gOB2IzGYPLFby9Aft4as3uTV8Fqz5tqLoAghmk5uUSWb9+bKJVD1kEA+hTJrBZvcaFYuv7bBlB8uqhWipfsLUKx2/No1PEe1OdCT6uLag7T82jpawkU7cpzbFJvC4a0pqLEmCiuKADCYjPz7+t7cONaxLq692kLamvexWUqIGXAHftHdT1l3acY2bFWlBCQ41uQ1mH1rBbC9qhSDR+21ZqsrHUfqJq/aE6MIIZrWkjWH5BKoepzVesjuwq7Y+ePQmhZ9qdOZCu0fQ97aNFI+3ULk8CRsldVk/rIfv/Yh+MQ3vEi6X9tgiv7OwW6xOWf0Mgd6EdQzkozF+1GrFTxCvcn96wh2i42AQVHc9fPjzBg5BZ9KMwUFBfzjgh60iQngnimPUV2eR0iH0ej0eiqPLuIOjsubTlyTVlXs5O1ZTGjyhc5F7L3D2pO9/QcKjl63bLOU1Jnf2FJ4EJN3MGbfsEZ574QQp2fdjizKKqz4ere8dZ6bkgTySRj0BlYcWqN1Gc3K6GOm7S29yFi0j8Pf78BgNhDQJZzoMe1O+jj/5FB0Bj0l+/IJ6hbh3B57WUcMXiZyVh5GsdrxivajzcSeeIR4o6AwY9mrmJdXsH7ZGvbs2UPfThGYyx0jovP3/kr+3l9r1+cVVGepu+Ija9HpjfjF9HJuM3kFEtnjH+TtXgQ6HZE9r8XoWfsDRXnOXnyjTn30LYRoXDa7yq/rjnDZ0DZypHwcmcu6AaqqklGaxZRF9a+/LOpKW7CXqpwy2t5y5qtrnRffn3v6/ROD0THRR0VFFQ++uZL03LJTPPLsVOQfJH3tBySNnIrRs/5BZUKIphMX4cc7j4zUugyXIh9NGqCisuzAX1qX0aJEDEugMquMirQzn45y5ZF1PPLbC1RWOSYf8fb2YOaDwxjQObKxywQcU2sGJg2VMBZCI6nZpew9UoiiyDFhDQnkk/jz8DqtS2hRTH4exIxLJn3R3rN6fGpxBpPmP05miWMQmNFs4rGb+3L1qMZd27Yibx/VlUWEdBjdqPsVQpyZxasPIVdAHSMt63rYFTvbs3fzf3/M1LoUt/XwkEn0i+mBTqdDVVVWb8/k+U9b7sIeQoi6PM0GvnhmLOYGpvJ1N3KEXA+D3sDvB1drXYZbe2XVe3y9fR6K3Y5Op2Nw92je/vcIzEb5lhWitbBY7azbkSXXJB8lv93qUVltYUP6Vq3LcHs/7lrC//35NtXVjmui4yP9mfXEaMKDvDSuTAjRWP7cki4jrY+Sd+EENsXOyiPrqVYaXkhBNJ9t2bu4f/FTlFQ6Bor5+Xryv0dG0KP9yVdyEkK0DBt352Ctdp+5Hk5GAvkERr2BP9zs2mNXl1dRyJ3zp7E//xAAJrOJZ24fyPhhbbUtTAhxzqqqHW1rm7StJZBPVFpVxt68g1qXIU6gKAqP/fYiv6b8iaoo6I0Gbru0M1OuO/NrnoUQruXPLekYpW0tgXw8m2JnQ/o2VGTguav6YMOXvLfhC+w2Gzq9npF943h9yvnIWC8hWi5pWzvIr7HjGPUGNmZs17oMcQrLDv7FY8tewmJ1rNbULjaQT564kGB/z1M8UgjhiqRt7SCBfBy7Ymdb9i6tyxCn4WBhKpPnTyenNA+AQH8vPpg6kk6JsnKTEC2RtK0lkJ0URWFn7j4stqpT31m4hIrqCu5d+ASbM/5GVVXMHiZeuGswFw1K1Lo0IcQZ2rQnx+2vR5bVnmroYL2LX3t86KvtVGSW0vnBwbW2lx0qIuu3FCqzyzB4GgnoFEbkBW0weDi+vPs/3kT5oaIG99vjmZNP8G4trGT/x5voMLkfRh8zql0hZ9URCjZlYiutwhziTfjQhFqrPJ2KvcrGnrfX4ZsYSPwVnZ3bq0uqOPLDTirSSvCK8iVuQic8Qrydt1dmlnLgsy10vH+Qc5nH5/98m0vih/PJ1Hf4fPZs7r6iG22i/Xnn+22nXY8QQlsWq52dBwvo0iYEvd4959OUI+Sj9Do9mzL+1rqMBhVuzaJ4V26d7ZacMg58tgWdUU/C1V2JGJ5E4dYsjny7w3mf2HHJtLujT60/8Vd2Bh2E9Iups8/jqarKkR93ETYoHqOPY+3SrN8PkrX0AEE9Ikm8vjs+8QEc+XYHRTtyTvv1ZCzaR3WRpc729EV7Uax2Eq/thsHTxJHvd9Z+3C8phA9NcIZxjQVHlhN/fgemTZ0KOh1jByfx0r3noZfvcCFajPW7srUuQVPy6+qojJJscsrztC6jXtUlVaQv3IvJ36PObYVbHd/Aidd1w799CCF9ooka1ZaSvflYixyDnjzDffCJC3D+8Y7xJ3dNKl6RvkSPbX/S5y7elYslp5yQ/seCu2BzJkHdI4gckYRf22BixyXjHetP3tq003o9JXvzKNqRg96zboOmLKWQsCHx+LULJmJkEhVpJdirHJO0lKYUUJVXTkj/2Hr3W5GsZ8vObfy84GcAOiWF8PHjo/H3kUXQhWgJNu3OdtujY5BABhyDudanb9G6jAalztuNX9tgfNvUHbCk2BR0Bh364yZnN3g71hS2VdQ/21j+hnQqM0qJvbQj+lNcL5Tzx2ECOofVup9qU9B71A5Tg7cJe2X1KV+LrbKa1Hm7ibqwXZ2jXAB0oDc5nktvOPqDqTqO1DN/2U/kyDYN1qw36vHrHMqM157lUGEqACGB3nz82AW0jQk4ZW1CCG0dziqlqNR9x/FIIONYTGKji7ar8zdmUJlRQswl9S9BGNw7CoCMxfuwVVRjySkj+/eDeEb44BXpW+f+9iobWcsOEtQjEu/Yk68FbMkrpzKjlMDOYbW2hw6Mo3BLFiX78rFbbBRuzaJ0fwFBPU69dnH6gr14hvkQ0je63tu9YwMo3JqNvbKags1ZeEb4YPA0UrQtG9WunvI5AruEU5Fewv1fTmfFwTWoioKHp5lX/3UeI/rEnbI+IYS21u1038ufZFAXUGGtZG/+Aa3LqMNaVEnG4n3ETejkPH97Iq8IX6IubEf6/D3krXG0jE2BnrS7rTe6elo/BZszsVdWEzEs8ZTPX3agEADvmNrBHTY4jorUYg5+fmwQXHDvKMLPSzjp/op35lKyO4/ke/uja2AR1JiL23Po67/5+/k/MYd4kXB1VxSbQtbSA8Rc0gFrYSVpP+/BVmYluHcUYYPjaz2+ptbSAwW8ve5T9hcc4pYeV2EwGplybU+Sov34+Oed9T21EMIFbNqdw4UDTv67pLVy+0C2K3a2ZO1EUV3rE5mqqqT+uBv/9iEEdglv8H7Zfxwi67cDhPSPIaBzGPaKarKXHyJl1mba3dYHk2/tIM9fm45/x1A8Qr0b2OMx1kILBk8jBi+Tc5tiU9j/0SZspVXEXpqMR6g35anF5Kw4hN5sIObi+o/kbeVW0n7eTdSYdpgDG16tySPEm+R7+mO32jGYHW343FVHMAV44J8cyt531+HbNpjAruEcnL0NjxBv/JOPLTRh8DRi8DRiLXQMGFuyfwUHC1N5cti/MJs9uHx4e5KiA3nivb9O+fqFEM1vy75cFEV1y3PJbt+y1ul07M7br3UZdeSvS6cyu4zose1R7QrqcS0c1a6gKqrj8qMVhwjsHkHsuGT82gQT2DWCNjf3wlZqJXfl4Vr7rMwqoyq/gqDup24tA9gtNvTm2guHF+/MwZJVRvxVXQjpF4NvUhARwxKJGtOOvDVpVGaX1buvtJ/34BHmQ0jvqPpfj1p7utKaMLZXVpP952GiRrejqqCSyswywgbH4x3tT0CnMIp21h3ZrTcbnAPBAPbmH+DuhU+QX14AQM8OYXz42Ci86zuHLYTQVHllNfvTiur8TnAHbv8bSa/TsyfP9drVRTtysFdUs/PlVXVu2/b0ciKGJxLSLwalWsEnvvaAJZOvGY9Qbyw55bW2l+zJQ2/S498h5LRqMHqbsFtqDwyzHr1U6cTn9EkIBMCSU45XRN1z18U7c521H69wSxaFW7Joe0svfJPqDlrL/vMwPvEB+MQHUJ5a7KjLy/Fta/AyYs2orPMYe2U1Rm9TrW0lVaXcM/8Jpg//F10jkokI8WHW9NH8e+ZKDmeVNvQWCCE08HdKHm1iAjAa3Oso2e0D2Wqv5kjR6V2u05xiL0tGqao92Xr27wepyCwl6frumPw8MPqYMXgZKT9cTOhxlwLZyq1U5VfgHVv7SNgx2YZfrRHZJ2MO9ESx2rFVVmM82rb2DPUBoPxwEX7tjgV7xRFHWHoE19+Obj+pb51tB7/chneUHxEjkuptoVuLLeSvS6f9nY7H1pxHry6zYg7wpLrUivGElrytshqlWsEcWHdeawWFZ5b/l3/2uIJL24/Ey8vMGw8M46UvNvHX9sxTvh9CiOax61ABV4w4+SWZrZFbB7KqquzPP4Tdxc4fw7HgO57B24TOoK81yCpyZBvSF+zF4GEgoEs4topqcv48jE6nqzPgyZJdhm+74NOuoea+5YeLCejoOE/r3zEU71h/jny/k4gRSXiG+lCeVkzOH4cdtx2tzVZupaqgEs8wxyjpEweGAegMegzepnpvA8hadoDAruF4hjveC3OQJx5hPmT9loJ/pzCKd+USN6FjrceUH3Z8MPA7yeucvfUH9hcc5P7+t2AwmZh6Yx/mLN3HF0v2nPZ7I4RoOrsOFWhdgibc+hyyXVVc8vzxmQgdEEv8lZ0pTyvh4OytZCzeh2eoN+3v6lfnaLW63Fr/tb8N8AjywivKj9J9+c5tOr2ONhN7EtA1guwVhzgweyuFW7MIH5ZAwtVdnfcr2ZvP/g82Upl5du3gyuwyiv/OIWJE0rHn1ulIuKozlVnlpM3bTWi/GAI61b4kq3RfPt4x/icdOAawJnUzD//yf1RYytEZDFwzOpknbu1/VrUKIRpXcZmV7IIKrctodjrVHc+cH+f5P95mc6ZrXoPsCop25JA6dxedHx7inBvbVdmtdna+vJL4KzrXCeqGmA1mXhg9ldgAx/Xc6TmlPPD6cixW1+uaCOFOHri2F+f3jnWrFaDc55U2YF/+Qa1LcGkBncPwDPchf3261qWcUv76dDzDffDvGHrqOx9ltVt5cPEz/HVkA6qqEhPux6wnLiT6NC4LE0I0nZ0HCzC42aVPbh3IWaU5lFnLT31HN6bT6Yi/sjN5a9KwlVu1LqdBtnIreatTib+ic4OTjpzMf1d/xOdbvkex2/Dx9uDth0fQt1PD138LIZrW7kMFZ/Wz3JK5bcvapthZcWgN762frXUpwoV0CWvPtPPuwWz2QLHb+Xzxbr5b1rLHGQjREul08PV/Lsbb03TqO7cSbnuEbNDp2ZuXonUZwsXsyN3HfYtmUFRRjN5gYOLFnXnkxrqXbAkhmpaqwp4jhW41QYjbBrJOp3PJCUGE9gotxUxe8Bh78lLQ6XQM7RnDzIeHYzzFylhCiMZ1ML0Yu10CudWz2KrILK077aIQAIqi8MTSV1i093dURSEhKoDPnhhNWD0TjgghmsahzBK3+iDsPq/0BGklmai4zycvcXY+2fwNM9d9it1WjZ+vJ+8/OpJu7U5v6lEhxLk5mFGidQnNyi0D2abYOVzk+pfxCNfw5+F1TP3tRSqrKjGaTfznzkGMOy/p1A8UQpyTtJwyFMV9DpzcMpD1Oh2pxRlalyFakMPF6dw1/zGySnPQGwzcOb4r91/bU+uyhGjVbHaFjDz3uTTVTQNZL4EszliFzcK/Fs5gfdpW0OkY1S+B1x84Hzc6xSVEs0tJK8Jud4+Z89z2V0l8QAxtgxPwMsogHXFmXl71P77e/hOK3U67uEBmPTmGID8PrcsSolU6lFkCbjI/iFtODGJT7Bj1x5YgLLaUklqcQVpJJuklWc4/hZZiDasUrq5HZGceGTwJk8lMtbWax95bze5DhVqXJUSr0rdTBDNuH6h1Gc3CLQO5KusgmV89i1dSdzxjkzGHJ2IMDAcvHwxGM3qdo3FgsVWRUZLtDOuM0mzSSrLIKct1ySUbRfML8w7h+VGP4u/lh2KzMfP77fy67ojWZQnRakQEe/Ph46O1LqNZuF0gq4qd8l2ryZn7ev130BvxjO+CV0InzBFtMIdEg08AepMHhqNH1XbFTm55AUeK00kvyXKGdXpJFhZbVTO+GuEKjHojz17wMG2DE1AVhUWrD/HuD9u1LkuIVkGv1/HDi+Mw6Fv/GVb3C2S7jaK/fqTwj6/P+LGmsHi8krrjEd0Oc2gser8QdB5eGA3H5lotspSc0P7OJkPa325hUr9/MjJxEDq9nt2HCnj07T9RpJEixDn7aPpowoNa/wpsbhfIADnz3qTs7xWNtj+9T+Bx7e8EjAGO9rfR6OFcraSm/V1zVJ1ekkV6aTbZZbko0v5uNS5ocx6397oGg9FIYUkl97z8O6UV1VqXJUSL9sykQfRsH9bqV39yy0BO/2QqVRn7mv6JjGa84jrhmdAFc0QS5uCoetvfOeX5tYP6aFhXSfu7RWoXlMiM4ffjYfbEWlXNv2eu4kCGdEiEOFt3XdGdCwcktPppNN0ykA+9dhNKZZmmNZjDE/BM7I5ndDtMobHo/YLrtr8ri0ktySStOJP00mNhXWRxr+nkWiJfszcvjn6MMN8QFJuN17/ewvLNMjucEGfjyhHtuHFsJwwGCeRWRamq5NAr/9S6jAbpfQLxatMDr5iOmMLjHaO/PX0wGs3Odk1ltYWMUkf7O6PEMfI7oySL7PI8aX+7mMeH3UePqM6oisK8Pw/w0U87tC5JiBZnaM8Yt1gG1e0C2VqQQdq792ldxpkzmvGK74xnfBfMkUmYgyIbaH/ncbgo3TGYrDTLEdbS/tbUtV0v4/KOF6IzGPg7JY9p76zSuiQhWpTkhCBe+dcwrctocm4XyJbU3WR89rjWZTQqc0Qinond8IxujykkBoNfCHh41mp/F1YWk1acSWpJBukl2aSXZJJemk2xtL+bRb+YHkwZcBtGk4n8ogomv/g7FqtN67KEaBGC/T35dMYYrctocm4VyKqqUrF3HdnfvaR1Kc1C7xuM99HR36awhtvf6aVZpBZl1DpPnVOeL+3vRhbhG8bzFzyCr6cv1qpqHnjjD1KztR3LIERLoNfB3Jcvk1HWrYlqt1G6fTl5C97VuhRtGc14JXTBM74zHhFJmIKjwNu/VvvbptjJKcs7Nvr7aFhnlGRTZbdq/AJaLrPeyHOjHyUhMBa7zcaLszexenum1mUJ4fK+/s/F+HiZTn3HFsztArl43XwKln2udSkuyxzZ5mj7ux2mkBjH6G9z7fZ3QWXR0fZ3JhklWc5BZcVVpRpW3rLcN+BmzkvoD4rKd8v389nCXVqXJIRL++CxUUSG+GhdRpNys0C2U7DiS4pXz9W6lBZH7xeCd1I3PGM7OtrfAWF12t8V1ZXHTX5ybFBZTnkebvRtdtouaj+cm3tciU5vYNv+XKb/b7XWJQnhsl7+11A6JgRrXUaTcq9AVlXyFr5L6ZalWpfSehg9jrW/I5MwBUXW2/7OLss9bkpRx6CyzNIct29/J4e25Ymh92E2e5BbWMHkF5Zitcm5eyFO9NjN/RnYNbJVn0d2q0AGyPruRSr2rNO6DLdgjmqLV0I3PKLbNtz+rigitSSDtJIsx8jvEsciHSVu1P729/DjpQunEewdRFVVNfe8spzsggqtyxLCpdz7jx5c0C8eYyueHMTtAjnjsyewpO7Uugy3ZvQPdcxSFpuMOSweQ0AYeHrXaX+nl2SRWpxRa0rRnIr8Vtn+1qPniRH30yW8A3abjedmbWD9rmytyxLCZUy8uBMTzm+HqRVPn+l2gZz63gNU56VqXYaoj8mz9ujvoEjw8UdvNB/X/raRVZZLalHG0UlPHOepM0uzsdpb/iION/a4knEdRgIwZ+k+vli8W+OKhHANE85vy83jOrfqZRjdLpAPv3Eb9rIircsQZ0TnaH8ndsUj6sTR30bnvQoqijhSnEF6SWatsC6talnX+g6O68N9/W9GbzCweU8OMz5Yo3VJQmhuRJ84Hry+t9ZlNCm3C+QDz18DisyQ1FoYA8Icl2nFdsQcFocxIAzV0xuj4bj2t7WStBLHZVrHn6fOdeH2d6x/FP8Z+TDeHt7kFFYw6YWl2GSwl3Bjg7pF8djN/bUuo0m5VSAr1VUceul6rcsQzcHsiVdCN7ziOmGOTHSO/jYYPdAfbXlV221kl+U6L9OqmQAlozSbahdof3saPXlh1KNEB0RiqarmrpeWkVdk0bosITTRp2M4T90xSOsympRbBbKttIAjb96hdRlCU3rM0W3xSuiKR3Q7zCHR6Hxrt79VVaWg8lj72zGgzHGpVqm1vNkrnjL4DgbG9kKxKzz7yTo27s5p9hqE0Fr3dqE8d9cQrctoUm4VyFU5h0n/4EGtyxAuyhgQhldSDzxiOhwd/R3qGP19XPu73FpBWkkWacXHz/2d3eTt78s6jub6bhPQAV/9upevftnTZM8lhCvqmBjEy/e17hWf3CqQLWm7yfi0da30JJqezuyFV2JXPOM6Ya4Z/e3tV2/7+3Bx+rHpREuzyCjNabT2d7fwZKYOvRujwcTG3dk8/eHaRtmvEC1B25gA/vvgcK3LaFLuFcjpe8mYNU3rMkSroccjpj2eCV3wiGqLOSQGnV8QOlN97e/0o5Of1CzSkXVW7e9gr0BeHD2NAC9/cgoquOP5X1FkrJdwA3ERfrzzyEity2hS7hXIGfvJ+ORRrcsQbsAYGIFXYnc8YztgCovD4H908hODqU77O/WEQWV55QWoNPxjqdfreXbEQ7QPbYPFauOuF5fKYC/R6kWGePPBY6O1LqNJuVUgV2UdIP2jf2tdhnBjerO34zKtuI6YI5MwBUbU2/7OKsvhSFE66aXZzku1MkuzqT7ukr3bel/Lhe2Goagqz360ho27c7V6WUI0uWB/Tz6dMUbrMpqUewVy9iHSP3xI6zKEqIcej9gOeCV0wRzZ1jH6u572d35F4bFFOkqzifWP5JIOIwEdX/2ym69+2avtyxCiifh5m/jy2Yu1LqNJGU99l1ZE13qnXBMtnUJV2m6q0upOlWkMOtr+jknGNyyOrgGxdA3vUKv9raoq113YkZgwP175YmNzFy9Ek2vNqzzVcKtA1rXiOVBF62UrzKa08FdKN/9aa7vewxuvpO54xDra3+aQGM7vHUvbGH/+/dZKyiq1n9xEiMai10sgty5u8AlLuA+lqoLy3Wso331srmvf7iOIHjuJT58czf99ukEmERGthtHQ+n9/u9Uho05a1qKVK9v2O+kf/xtdWR4zbuvP5Cu6a12SEI2iNa/yVKP1v8LjSSALN1Cdm0rahw9TtmMllwxJ4t1HRuDr6V7NMNH6GNygZe1eCeUGX1AhANRqC7k/vUnOzzOJDvHi0xkX0js5XOuyhDhrBkPrj6vW/wqPIy1r4W6Ob2E/dbu0sEXLJUfIrY0EsnBDx1rYq6SFLVosgwzqamVklLVwU44W9hvkzn+bGGlhixbIKIO6WhkJZOHmSrcuI+3jR461sC/vpnVJQpwWb6/W39Vxq0DWGUxalyCE5qpzjxxrYZ/XhnekhS1aAF8vs9YlNDm3CmS9h7ecRxaC2i3s2BAvPp0xWlrYwqX5eplo7UsvuFU66XQ6DN7+WpchhMs41sLO56nb+zNJWtjCRfl4mbArEsitisE3UOsShHApx7ewx53Xhnf+LS1s4Xp8vU208gNkNwxkn0CtSxDC5RxrYb9DbKgXnz4pLWzhWny9TK1+XK77BbJvkNYlCOGySrcudbSwy6WFLVyLr5cZfStPZLcKZNVux+AToHUZQrg0Zwt7p7Swhevw9zG3+iUY3SqQQcUoLWshTkmttpA7r3YLu1eHMK3LEm7M30cue2pddDppWQtxBo5vYT99xwDulBa20EhIgKfWJTQ5twpknd6AwS9Y6zKEaFGOb2Ffel4b3pYWtmhmZqMeX285Qm51jHKELMQZO76FHXe0hd1TWtiimYQEemldQrNwu0CWQV1CnL3SrUtJ/+RRdBUFPCMtbNFMwoIkkFslvYc3GKTdJsTZsuYcJu3Dhyjb+Ze0sEWzCJMj5NZLJgcR4tyoVgu58/5L7gJpYYumFxrghc2uaF1Gk3PLQDZK21qIRlG65YQW9gRpYYvGJy3rVszgF6J1CUK0GrVa2EMdLWwfaWGLRhQW5I2hlU8KAm4YyKpixxwao3UZQrQqJ7awP3tyND2khS0aSXSoD7pWPm0muGEgA5jDE7UuQYhW6fgW9rN3DOCOCV21Lkm0cEaDjvAgb63LaBZuF8g6vQFzZJLWZQjRatW0sMt3reayoW15++EReEsLW5yl6FDfVj+HdQ23C2QAU1CkXPokRBNSrRZy5r5O7oJ3iQv35nNpYYuzFBfhp3UJzcYtA1mnN2AOkfPIQjS10i2/kf7xI9LCFmctLtLPLS55AjcNZABzeILWJQjhFqSFLc5FfIQfbjCeC3DTQFbtNsxh8VqXIYTbcLawF/6PuHBvxyjs9qFalyVagMQofwx694gq93iVJ9IbMEckal2FEG6ndPOvpH/8CPqKAp69cyC3j5cWtmiYXq8jKtRH6zKajVsGsk6nwxwhI62F0MLxLezxw9oyU1rYogGRwd4YDe4TU+7zSk9g9A1E7+k+n7yEcCXHt7DjpYUtGtAmxr2mOXbbQAYwh8nALiG0dKyFXSgtbFFHh/ggtxlhDW4cyKqqYI6QQBZCa44W9oOU715ztIU9XFrYAoCOicFuMYd1DbcNZBRFRloL4SJUq4WcH1872sL2cbSw20kL250Z9DraxgS4xRzWNdw2kHUGo0yhKYSLKd38K+mfPOpoYU+SFrY7i4/0w2wyaF1Gs3LbQAYcR8g6t34LhHA51uxDjlHY0sJ2a8nxQaiqqnUZzcqt00hv8sAjqo3WZQghTqBaK+u0sLtLC9uttI8Pwq5IILsNVbHjldhd6zKEEA04voX9n0kDuf2yLlqXJJpJ56QQt7oGGdw8kNHp8GrTQ+sqhBAnUauFfX473npIWtitnZeHkZgw95snwq0DWafT4xnbEZ3RrHUpQoiTOL6FnRAhLezWrmubELcaXV3DrQMZHKOtPWM7al2GEOI0OFvYlY4W9m2XSgu7NerRPsytJgSp4faBrNpteCXJeWQhWgpr9iHSPnC0sCcMlxZ2a9S7Y7jbnT8GCWTQG/Bq01PrKoQQZ8DZwl70nrOF3a1diNZliUYQ6OdBXISf1mVowu0D2bHyUyJ6T1+tSxFCnKHSTb+Q/slU9JWFPDdpELdKC7vFc+cZ2tw+kMERyp4J8oMsREtkzT7obGFfLi3sFq9HB/c8fwwSyMDR88iJ3bQuQwhxluptYbeVFnZL1KdjhFuePwYJZMAx0tq7bW+tyxBCnKNaLezJ0sJuaaJCfQj299S6DM1IIB9lCorA4CefqIVo6Y61sNc6W9heHtLCbgl6J4ejuNn81ceTQD5KVVW5/EmIVsLRwn6V3EXvkxDhw+czpIXdEgzpHg3um8cSyE6KIueRhWhlSjctOdrCLjrawu6sdUmiAX7eJrq0CUGvd78ZumpIIB+lMxjwbtdHlmMUopVxtLAfPNrCbs9bDw3H0ywtbFfTt1MkbjhbZi2SPscxePlK21qIVujEFvbsp6SF7WoGd49CcbPlFk8kgXwc1W7Ht+swrcsQQjSRE1vYt0gL2yV4mAz0Tg7H4KaXO9Vw71d/Ap3BgE/HgbL6kxCtmLOFvWcdVwxvz5vSwtZcr+RwzCaD1mVoTgL5BHqTB97t+2pdhhCiCanWSnJ+eIXcRe+TKC1szQ3qFum2s3MdTwL5BKpix7fb+VqXIYRoBqWblpA+67gW9jhpYTc3o0HHwK5Rbjs71/HkHTiBTm/Au20v9F6y2IQQ7sCadZC0Dx9ytLBHtOfNB6WF3Zz6dIzA29OkdRkuQQK5Pjo9Ph0HaV2FEKKZqFUV5PzwCnmL3ycx0tHC7tpGWtjN4YJ+cdilXQ1IINdPVfHrNlzrKoQQzaxk47EW9v/dJS3spubnbaJ/50i3H11dQ96Feuj0ejzjOmLwd991OYVwVye2sN948HxpYTeRob1i0bnxzFwnkkBugKoo+HY5T+syhBAaOL6FnRTpy+ynRtNFWtiNbnS/eLeeu/pEEsgN0SFtayHcnLOFbSnmeWlhN6rYcF/axQW69dzVJ5JAboBOp8ccFocpLF7rUoQQGrJm1Uwksl5a2I1oRB8ZzHUiCeSTUBU7vl2Gal2GEEJjjhb2y+Qt/oCkSF8+nyEt7HOh18Go/vEymOsE8m6chE5vwK/7cFkBSggBQMnGxaTPmoahytHCvlla2GelT8cIgv09tS7D5UjSnILRLxjvDv20LkMI4SKsWQccLey967lSWthn5bJhbaRdXQ8J5FNQFTuBgyZoXYYQwoWoVRXkfC8t7LMRE+ZLzw6yslN95B05BZ3egGdMBzxiOmhdihDCxdRpYV8iLexTuWRIkhwdN0AC+TSodjsBA8drXYYQwgXVamGPlBb2yXh5GBk9QAZzNUTeldOgMxjwSe6PMTBC61KEEC7I2cJe8uGxFnZSsNZluZyRfePwkHWPGySBfLpUlYD+47SuQgjhwko2LCL908ccLey7B3PTxdLCPt74YW20LsGlSSCfJp3egF+vUeg9ZVlGIUTDrJkppB9tYV91QXv+++D5eJrlqLBnhzCiQn3R6WRmroZIIJ8Bnd6If+/RWpchhHBxynEt7DaRfnw+40K3b2FfMbydDOY6BQnkM6HTEdD/UjDIgA0hxKk5WtjT3L6F3T4ukF7JcqnTqci7cwZ0Oh0GnwCZTlMIcdrqtLCnnI+n2b1+9V4zKlmOjk+De31XNAJVUWSiECHEGanVwo7y4/MZY9ymhZ0Q6ceArpFydHwa5B06Qzq9HnNoLF5tempdihCihTm+hf1/dw1m4sWdtC6pyV09qoMcHZ8mCeSzoNrtBMpEIUKIs1DTwq7ct4F/XNChVbewo0N9OK9HjBwdnyZ5l86CzmDAK6k75ogkrUsRQrRASlUF2d+/VKuF3bkVtrD/cUF7VFXVuowWQwL5LKl2O8EjbtC6DCFEC1ayYREZNaOwW1kLOyzIixF94+To+AzIO3WWdAYD3m174RnvnpcxCCEaR1VNC3v/xlbVwr52dDLIwfEZaflfdQ2pip2QC27SugwhRAunVFWQ/d2L5C35yNnC7pQYpHVZZy0+wo9R/WQRiTMl79Y50OkNeES3wzt5gNalCCFagZINC50t7BfuHtJiW9g3j+ss547PggTyOVIVhZCRN4JO3kohxLk7sYX9egtrYXdpE0K/znLd8dmQd+wc6fR6TMFR+PUYqXUpQohW4vgWdtvoltXCvu2yLnLd8VmSQG4EqqoQPPx6dCZPrUsRQrQiJRsWkjFrGkZrCS/ePYQbx7p2C3tw9yjaxwXJ0fFZknetEeh0evRefgQOnqB1KUKIVqYqM4W096dQsX8jV49y3Ra2Qa/j1nFdUBQ5d3y2XO+r2kLp9HoCB07A6B+mdSlCiFbG2cL+5WOXbWGPGZRIeLA3er2sd3y2JJAbk15P8AU3al2FEKKVKlm/gIxPH3O5Fra/j5mJLlJLSyaB3Ih0egO+nYfgEdtR61KEEK1UVcZ+0j54kIoU12lh33xJZzw9DOh0cnR8LiSQG5mq2Akdczsg35hCiKahWMrJ/vZYC/uzGWPoqFELu2NiEKMHJGDQS5ycK50qV283iZyfZ1K27Xety9Ccoqos2lvI/D35ZJVVE+hpYGCcP//sEY6P2VDvY+buyuO99VnMuqIDEb7meu+zL7+SKQtTuH9QDKPb1f+LaE1qCU//foRFE7ueVq02RWXKwhRu7R1Jr2jfOre/tz6Tubvy6+xvf34ln27JZm9eJaoK7UI8ubV3JO1CvE76fFsyy/hiWw6HCi2Y9Ho6h3tza58Iov08nPeZvzufr7fnoqgwvlMI13SrPUbh2eVHaBfsyXXdw2tt/2xLNiUWO/cOjD6t1y5aLo/odkRc+W8MPkF8s2w/sxfvbrbn1ut1vPngcGLDfWVkdSOQd7AJqKpCyKib0Hv7a12K5r77O4931mXQP9aPJ4fHc2XnUJamFPHciiP1zuSTVlLFrE3ZJ92n1a7w6qo07Cf5KLktq4yX/kw7o1q/3pZDmI+p3jDenl3OvF35dbZnlFTxyJKDVNkUpgyO4cEhMVQrKg8vPkBacVWDz7Ujp5zHfztEgIeRf58Xx139o0gvqeLhRQcpttgAOFho4d31mfyjaxi3943ky205bEwvde5jV24Fu3MruLxzaJ39X901jDVpJWzOLDuj90C0PMe3sK8ZncxrDwxrthb2JUOSiI/0kzBuJPIuNgGdTo/ew5vQi+7UuhRNKarKtztyubhDMLccPeoc1zGEewZEszmznH35llr3tysqr61Kw8+j/iPnGp9vyaHcaq/3topqO7M2ZzPt10MYz2C0Z0FFNd/8nVfnSBOgstrOa6vSCPE21rlt3u58PIw6nhmZyMA4fwbG+fPsyEQ8jHp+2l03wGt8+3ce8QEePHZ+HP1j/RiaGMB/RiVSXGXj15QiALZmlREf4MH4TiGMbBNI7yhfNmeWO/fx4YYsru8ejqex7o+xp1HPhE6hfLAh67TfA9FyHd/Cbhfj3ywt7CA/jxY7taerkkBuIjq9Ad9Og/DpNFjrUjRTUa0wsk0gw5MCam2PC3C0oTNLrbW2f78zj8JKG9d0bfjSsZ05Ffy0O597BtTfil2yr5DF+wq4Z0A0l3U8/fVlf9iZT7ivifb1tJk/3JhNsJep3tZ4XIAHV3YOxdN07EfJ06Qn1NtU5/UdLznUiwmdQtEfNwgmxNuEt8ngfJwOHebjjjyMBh3K0a7CX0dKKLbYuKh9w790hycFcLjIwrq00gbvI1qXmlHYJmspL909hH9e1HQDTG8f3xWTQS8DuRqRBHITUlWF0IsnY/AJOPWdWyFfs4G7+kfTJdyn1vbVqY6ASAg8dq70cJGFL7bmMGVwLB71HPEBWGwKr61K45puYSQF1T8r2oA4P2ZdkczFHc5ssfffDxZxXnzdUwybMspYeqCQKUNi6v1hGZccwlUnfIDIKKnicJGF+ONe34mu6x7OmBPCdFtWOWVWu/N96RjmxcFCC3vyKkgrqWJbVjldwr2xKyqzNmdzU68IDCfpAoR6m+gY6s3vB4oafuGi1XG0sKdQkbKpyVrYPTuEMaxXrLSqG5m8m01Ip9OjN3sSetEkrUtxGbtzK/jm71wGxPqReDRU7YrKKyvTGNMuiO6RPg0+9pNNWXia9Cc9go7286i3hXsyR4osFFTa6BDqXWt7udXOf/9K58YeEcT6Nxyux6uyKby6Kh2zQc9lHUNOu4Zii403V6cT4mVkVNtAAJJDvbm2exj/XnyQu37az4ikQIYkBLBkfyGeRj3nJfgzZ3sud87bx5NLD5FVzxF5h1AvtmTJeWR342hhv9AkLWxvTyNTru2NXZH5qhubBHIT0+kN+HQcgE/nIVqXorkdOeU8sfQQEb5mHhwc49z+9fZcyqx2bu0d2eBjt2WVsWhvIQ8NiT3pUeHZyCqrBiDS11Rr+3vrMwnzMXF559ML1opqOzOWHWZPXgX/Pi+2wRHiJyqoqGbqLwcpqLQxfXg83qZj59Cv7x7OD9d35ofrOjG5fxSWaoUvtuZwS+8I1qaV8tPufB45L5b4AE/+74/UOvuO8DVRZLFjsckvT3d0fAv7xbuHcMOY5HPe5+2XdSXAzyyXOTUBeUebgaoqhI6dhMEnUOtSNLPiYDGP/XqIMB8zL4xOxN/TMUBqf34lX2/P5V+DYjAZdNgVlZqpcO2qil1RHYOq/krnH11DiQ/wwK6o2I+eS1VUxxH2uagZIHb8kfXatBJWHCrmX4OiUY8+R02kOWqs/Zy55VYeXnyQnTkVTBsWx6B62t/1OVhoYcqiA+RV2Hh2VAIdw7zr3Meo12E62hr8YVceiYGe9IryZeXhEgbF+dMuxIuruoSyL7+S7LLaR8k1r6migUFwovWraWFXpmzi2gs78toDwzCfYRepRt9OEXLNcROqO2xUNDpn6/riyWR/+4LW5TS773bk8fHGLLpH+vDE8Pha1x+vSS3Bpqg89uuhOo+77cd9dIvw5p89wskuq+bLbbl8uS231n3+uzqd/65OP+1rjevj7+mop8x67Chy5eESrHaVyT/tr3P/cbN3MKptIA8NiQUcoTr9t0NY7QrPjU6kW0TDbffjbc0q45nfj+BjMvDKRUkkBJ58tbAii43vd+Tx4oVJzn/XDELzPToyvbDSVuvIvKzKjg5OOXJdtG41LWz/fpfQbtRNzH56DE9+sIbdhwpPex++XiYeuLYXiqLKfNVNRAK5mej0Bnw69MO3y1DKdvypdTnNZuHeAj7amMWwxAAeHhLjPNKrMbZDMP1jax9Nrksr4YttucwYEU+svwfB3kbeuLhtrfsUVFbz9O9HuKF7WJ3Hn6kIH0eA5VZU0wFHwP2zRziXJtduVS/aV8DifYW8cXFbAo6GeG65lcd+PYhBp+OVi9qcMlRr7M+vZMayw0T6mnluVCIh3qZTPubLrTn0i/FzTjgS6GmksNJxzXJBRbVz2/HyKmwEeRnrvO/CPZWsX0BV+l4irvw3L949hG+W7uOLJXtO67GTr+iOr7dJwrgJSSA3I0fr+k4qD2/HXlakdTlNrqCymvfXZxLha+LS5GD2F9S+7jjKz0yIt6lOGB0uctwvKcjTebTXIbT25UjZZY5AjPA117ntTMUGeBDuY2JnTjlDjraaI3zNRJwwP8i6NGOdWt5dl0mRxc59A6OpqFbYlVvhvM3bpHcG9P78SkwGnfPf/12djl1xBH9OeTU55dXOxwV4GmrN1gWOkdu/pBTyzqXtnNv6x/rx5up0+sb4sjq1hDZBnkSccB58R045feqZ6ES4r6qMfaR98CBhl93LtRf2o0+nCKbOXIn1JOMMBneL4vzesc1YpXuSQG5GOp0eTB6EXnwX2d88r3U5TW59WhlVdpXssmr+veRgndsfHNzwtJfN7bwEf9anl3FH39N/TLVdcV7j+9aajDq3d4vw5qUxbQDHFJcRviZeGtOGzFIrKUc/nDy3ou5ArOPb4TVmbc7mwrZBtYL6vAR/9uRV8MbqDKL8TDwyNLbWNaEFFdUcKLQwsVfE6b8o4RYUSxnZ37xAQP9xtLtg4klb2AG+Zu67uqe0qpuBzGWtkZx5b1L29wqtyxBH5VVUc+sPe8/oHLCr+3JbDqsOlzBzXFuZvEE0yCO6PRFX/Ru9d2CdFrZOB0/dPpAe7cPkmuNmIO+wBlRVIfSiOzD4ndnkFaLphHo7Lm/69u/cU9+5BaistrNgTwG39I6QMBYnVZWxj7T3H6TygGMU9qv3HxuFPeH8tvTuGCFh3EzkCFkjqmKnKvMAGZ9PB7tN63IEjhb0AwsPcGufCPpE+2ldzjn5dHM2xRYb/xoUc+o7C3FUQP9xBF8wEYvVzsc/72Tyld3lEqdmJIGsIVVRKN3yG3mL3tO6FCGEAI61sA0+gSjoJJCbkbzTGtLp9fj3vhC/nqO0LkUIIQDHRCLW7EMAEsbNTN5tjamqSuhFd+IR00HrUoQQgoBBE/Bu1wedXiaTaW4SyBrT6XSgg8h/TMXgG6h1OUIIN+aZ0JXgEddrXYbbkkB2ATq9Ab2nLxFXPgJ6uTRcCNH8DH7BRFz5MMioIs1IILsIncGAR0x7Qi68RetShBDuRm8g4sp/ozd7o5PzxpqRd96F6HR6AvpchF+PC7QuRQjhRkJG3YRHdDt0BjlvrCUJZBejqiqhY+/EI7rdqe8shBDnKKD/OAL6XeKY2ldoSr4CLsYxyEtHxD+mYvAJ0LocIUQr5tNpMCGj5TSZq5BAdkE6vQGDl78M8hJCNBnP+C6Ej78fVW14lSfRvCSQXZTOYMAjtoN8ehVCNDpTWDyR10wDnV5a1S5EvhIuTKfTE9D3IgLPu0rrUoQQrYTBL4So659EZzTLiGoXI1+NFiD4/Ovw73eJ1mUIIVo4vYc3UdfPwODlLzNxuSAJ5BYi9MJb8esxUusyhBAtlM5gIuLqaZiCI+XyJhclgdxCqKpK6CV34dNxkNalCCFaHB1h4+/HM7ajHBm7MAnkFqJmkfnwy6fg1baXxtUIIVqSkNE349NxoJwzdnHy1WlBdDo96HREXvUonvGdtS5HCNECBAy4lID+45wf6oXrkkBuYXQ6PegNRF7zOOaotlqXI4RwYT6dzyNk1M1alyFOkwRyC6TT69EZTURdPwNTWJzW5QghXJBPx4GEj/+XTPzRguhUVZXFtloo1W5HsZSRPmsatqJsrcsRQrgI327DCbv0HgCZ+KMFkUBu4VS7HXt5IemzpmEvLdC6HCGExvz7jCH0ojtRVVXOG7cwEsitgGq3YyvOIeOzx7GXF2tdjhBCIwEDxxNywUStyxBnSQK5lVAVO7aSPDK/eFra10K4oaBh1xI09B9alyHOgQRyK6La7ShVFWR+9TTWrINalyOEaCbBo24mcMClWpchzpEEciujKnZUu43sb1+g8uA2rcsRQjQlnZ7QsXfi32u01pWIRiCB3AqpigKo5Pz0JuU7VmpdjhCiKegNhF16H75dzpPBW62EBHIrpaoKOp2e/F9nUbzuZ63LEUI0JoORiCsexrt9H7msqRWRQHYDRWvmUbD0c0C+1EK0dDqjmYirp+KV0E3mpm5lJJDdgKqqlO1YSe7PM0GxaV2OEOIs6b18ibz6MTyi28mqTa2QBLKbUBUFy5EdZH37AqrVonU5QogzZA5PIPLqxzD4BUkYt1ISyG5EVexYc1PJ+uoZmUBEiBbEp9Ngwi67D53eIGHcikkguxlVsWMrLXBMIFKYqXU5QoiT0ekJOv86goZc4RyoKVovCWQ3pCp21Ooqcua9QcW+DVqXI4Soh97Th/DLH8QrqYdc1uQmJJDdVM2n7aK/fqRgxVeg2LUuSQhxlCk0jshrpmH0D5UWtRuRQHZzqqpSlb6X7B9ekdWihHAB3h36Ez7hAXQGo4Sxm5FAFo45sK0V5Pz4mky3KYRmdAQNu5qgoVfL+WI3JYEsgKPTbep0FP35DYUrvwNV0bokIdyGzuxF+IT78W7XV84XuzEJZFGLqqpYDv9N9o+voVSUaF2OEK2eKTiayGsewxgYLi1qNyeBLOpQFTv2ylJyvn8FS+ourcsRotXy6zGSkAtvQ2cwoTNIGLs7CWRRL1WxAzoKfp9N8ZqfkHmwhWg8Bt8gwi65G+92vVFVVdrUApBAFqehfN8Gcn96C8VSpnUpQrR4Pl3OI2zsJHQmD2lRi1okkMUpqYode0UJeQvepWL/Rq3LEaJF0nv7EzZ2Mj4dB8goalEvCWRxWlRFQafXU7ZzFfm/fCRzYQtxBryTBxB2yV3oPbzlqFg0SAJZnJGaaTfzf/2E0q3LtC5HCJem9/QlZMzt+HUdKkfF4pQkkMUZq/nFUnlkJ7nz35FFKoSoh1fb3oRfei96L185KhanRQJZnDVVsYOqUvjHHIrWzJP5sIXAMclHyOhb8e850nmqR4jTIYEszpmqqlTnpZE7/22qMvZpXY4QmvFq05Owcfdg8AmQo2JxxiSQRaNQFTvo9JSsX0jBii9RrRatSxKi2ZhC4wgZfTPebXqiKnYJY3FWJJBFo1IVBXt5EbkL36Vy/yatyxGiSem9/Qkedi1+vUeDospsW+KcSCCLRue8RGr3Ggp/n011gQz6Eq2LzmDCv9/FBA29Gp3RJEfEolFIIIsmo9rtoNNRum0ZhX98g700X+uShDhnPp0GEzLqJgx+ITLlpWhUEsiiydWMxi7ZsIjCv36QVaREi+QR3Z6QC2/DM6a9jJ4WTUICWTQbVbGj2m0Ur/mJorU/oVZVaF2SEKdk9A8jeOQ/8e1yHqrdLueJRZORQBbNTlUUFGslRSu/o2TjYlSbVeuShKhDZ/YkcPAVBA4cD+gkiEWTk0AWmnB826nYK0ooXPG1YxpOmVhEuAC9lx/+fS4ioP+4o3NPS2taNA8JZKEpVVUAHbbiXAqWf0H5jlXI2stCC8bACAIGXIp/z1GgN0gQi2YngSxcQs0gGWtuKoV/fkP5nrVyxCyahTmqLYEDJ+DTaSCoqlzCJDQjgSxcSs0sR7ayQorX/kzplt9QLOValyVaIa+2vQgcdDleCV1ksJZwCRLIwiWpqgqqiqrYKN26jJJ1C6guyNC6LNHS6Y34dhlC4OArMIfGyjSXwqVIIAuXV/NLs2L/JorXL6DywFbkPLM4EzqzF/69RhMw8DKMvkFyHbFwSRLIosWoaSvaivMo3riI0q3LZJIRcVLm8AR8uw3Hv/eF6ExmQCezawmXJYEsWpyadjaqSvnu1ZRsWoLlyE6tyxIuwuAXjG+Xofh1H4E5LE7a0qLFkEAWLVrNUXN1QSYlm3+lfPcabEXZWpclmpnO7IlP8kD8uo/AM6GL4wObDnQ6aUuLlkMCWbQKqqqACjq9nqrsQ5TvXEnZrjXYCmWlqVZLp8erTQ/8ug3HJ3kAOqNJjoZFiyaBLFqd48PZmptK2c6VlO9aTXV+utaliUZgjmqLX9dh+HY9H4O3H6rdhs5g1LosIc6ZBLJo1RznmxV0egPW/IyjR86rqc49onVp4gyYQuPw6dAPvx4jMQVHyXXDolWSQBZu4/hwri7Mdhw5716NNeug1qWJE+jMnngldse7bS+82/fF6BeMqiigk1HSovWSQBZu6fhwthXnUXFgM5bUXViO7MJWnKN1eW5Ihzk8Hq82PfFu3xfP2GR0eoO0o4VbkUAWAmr94reVFWE5/DeW1J1UHtlFdW4qMhFJ4zOFxuKV0BXPxG54JXbD4Olz9ChYRkcL9ySBLEQ9VMV+tD2qR6mqoPLILixHdmBJ3UVV5gFQbFqX2KLojGZMYXF4RLbBK6EbXkndMHj7Hx2AJws6CAESyEKcFlVRAEdwqLZqLBn7sBzegSVtN9bcI9hLC7Qu0WUY/EIwRyTgEZ6IOTwRj6g2GIMi0On0tU4VCCFqk0B2cyNHjiQ9PZ2pU6dyyy231Ln9ySefZM6cOdx7773ExMQwbdo09uzZo0GlrkVVVVAU50hfpbqK6sIsqnNTqc5Px5qfQXVBOtX5majVFo2rbRrOo97wBMzhiZgjk/CISETv4Q0c7TKAhK8Qp0lGSwhMJhNLliypE8g2m41ffvnFOar14osvZujQoVqU6HJ0Oh0cd9mN3uThCKbQWEcL9riBSLayIqrz07DmpVGdn0F1QQbV+RnYinNBVbQo/7TozJ4YfYMw+AZh8AnE4BuE0TcIY0B43aNexQ56Q60R0BLEQpwZCWTBoEGD+PPPP8nKyiIyMtK5fc2aNXh7e+Pl5QWAp6cnnp6eWpXZItQXQkbfQAw+AXjGdgSd3rnKkGq3oVjKsVvKUSpLsVeUoFSWYbeUoVjKjv290vFve2U5iqUUxVJx8iDX6Y89j95Q+/86PTq9AZ3Z61jYHg1ag28QRr9gDP7BGLwD0Js8au1WVRTH8+p0tV6n48OJ/CoR4lzJT5Gge/fupKSksHjxYm6++Wbn9oULFzJ27FgWLVoEwA8//FCrZZ2cnMxzzz3H/Pnz2bRpE/7+/lx77bXce++9zn0sX76cd955h3379uHj48Mll1zClClTnMGenJzMPffcw48//kh1dTWzZ88mMTGx2V57c6kvtHQGIwafAAw+AcCxNrhzRLde3+BoY8VqcdxXrz8WkMeF/ZlQFfvRuZ9P/njHbTL6WYimIj9dAoCxY8eyePFi57+tViu//fYbl1xyyUkf9+KLL3L55ZezYMEC/vnPf/LWW2+xfv16AH799Vfuuusuhg8fzg8//MDTTz/NwoULefDBB2vt48svv+TNN99k5syZrTKMT5dOp0NnMKAzGB1/TnLpj97sid7T2/F/k4fj/me5vq9ObzinxwshGof8BArAEchbtmwhO9uxUtKqVasIDg6mc+fOJ33chAkTGD9+PHFxcUyePBl/f382bdoEwPvvv8/o0aO5++67SUpK4oILLmDGjBksXbqU/fv3O/cxfvx4unXrRs+ePZvs9QkhhKuTQBYAdO3albi4OJYsWQI42tWnOjoGaNu2ba1/+/n5UV1dDcDevXvp3bt3rdv79+/vvK1GQkLCOdUuhBCtgQSycKppW1dVVbF06VIuvvjiUz7GbDbX2VZzJV19V9QpimMwktF47HyqDBQTQggJZHGcsWPHsmnTJr7//nvi4uLqHP2eqeTkZGf7usaGDRuAukfWQgjh7iSQhVOnTp1ISEjg1VdfPa129ancfvvt/PLLL7zzzjscPHiQ33//nWeffZYRI0ZIIAshxAkkkEUtY8eOpays7LTa1acyZswYXnvtNRYtWsSll17KjBkzuOSSS/jvf/977oUKIUQrI1NnCiGEEC5AjpCFEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOECJJCFEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOEC/h+qIZy2vc42XQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(12, 6)) # Adjust size as needed\n", "plt.pie(severity_counts, labels=severity_counts.index, autopct=lambda p: f'{int(p/100.*severity_counts.sum())} ({p:.1f}%)',\n", " startangle=140, counterclock=False)\n", "plt.title('Event Severity Distribution')\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Delve into hidden info..(group by Severity and Region)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Moderate', 'Minor', 'Extreme', 'Severe', nan], dtype=object)" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[\"Severity\"].unique()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "minor_cases = data[data['Severity'] == 'Moderate'].copy()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "country_counts = minor_cases['Region'].value_counts()" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "# Keep the top 3 countries\n", "top_countries = country_counts.nlargest(3)\n", "\n", "# Calculate the count for 'Rest'\n", "rest_count = country_counts[3:].sum()\n", "\n", "# Create a new Series from the top 3 countries\n", "top_countries_series = top_countries\n", "\n", "# Add the 'Rest' category by assigning it directly to the Series\n", "top_countries_series['Rest'] = rest_count\n", "\n" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAH2CAYAAABEGEf0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAR0lEQVR4nO3dd3hTZf8G8PuczO4Wyt6rrDLKKHu0gCAgS15FloKK/BBFHCCogL76KiIiSwVEkaGgDEVAloosWYoM2bL36B5Z5zy/P9KGlra0QNuTpPfnuriAjJNv0uTk7jMlIYQAERERkRuQtS6AiIiIKB2DCREREbkNBhMiIiJyGwwmRERE5DYYTIiIiMhtMJgQERGR22AwISIiIrfBYEJERERug8EkH7nDWnXuUAPdG/7MiAoGP1vu4V5/DkUmmAwaNAg1a9Z0/alVqxYiIiLQp08fLFy4EA6HI9Pto6Oj8frrr+f5+L/88gvGjh2b6+1ef/11REdH3/fj5CQhIQFjxozBvn37XJcNGjQIgwYNeuBj5xeHw4HXX38dERERaNSoEXbt2pXlNoMGDXK9PhcvXnT9vJYtW5btMRMTE1GvXj3UrFkTu3fvfuAa7/z5FLSTJ0/iiSeeuKf7pL8uM2fOzPW2f/zxB0aOHIk2bdqgQYMG6Ny5MyZPnoxbt27db8maSUpKQoMGDVC3bl3cuHFD63LyzZ3npuz+5Mc54m6eeOKJbB/30KFDud730KFDeO2119C+fXvUr18fHTt2xFtvvYULFy4UaM25+fTTTzF//vxcb5df52Ct5XZOWLlyZbY/4/r16yM6OhrvvPMOkpKS8r2uvP4cMtLnexVurE6dOpg4cSIAQFEUxMfHY+vWrXj//fexb98+fPLJJ5BlZ1abNWsW/P3983zsBQsW5Ol2I0aMwODBg++59twcPXoUP/74Ix599FHXZenP1V1s27YNq1atwogRI9CyZUvUqVMnT/eTZRnr16/H448/nuW6TZs2wWaz5XephWb9+vXYv3//Pd1HkqRMf+fko48+whdffIEuXbrgjTfeQHBwMI4fP4558+Zh48aNWLx4McqUKXPftRe2NWvWICAgAIqiYPny5fi///s/rUvKFxMnTsz0hfD222+7Lk9XrFixAnt8IQSOHz+OIUOGoEuXLpmuq1at2l3vu2TJEvzvf/9Ds2bN8Morr6BkyZI4d+4c5s+fj40bN+Lrr79GrVq1Cqz2u5k+fTpGjhyZ6+3u9Vzv6WbNmoUSJUq4/h8fH49t27Zh0aJFiImJwSeffJKvj5fXn0NGRSqY+Pv7o2HDhpkui46ORtWqVfHee+9hzZo16NGjBwDk+UvzXlWsWLFAjpud6tWrF9pj5UVcXBwAoE+fPqhQoUK2tylZsmSW1qtGjRph9+7diImJyXKCXrt2LWrXro2jR48WSM3uKDQ0FLIso1SpUjneZu3atZg3bx7GjRuHp556ynV58+bN0a5dO/Tu3RvvvfceZs2aVQgV54+VK1eiTZs2MBgM+P777/Hcc8+5fpHwZHd+TtO/JO88VxWU8+fPIzk5Ge3atbunx/zzzz/x3nvvYcCAAXjjjTdclzdr1gwdO3ZEr169MH78eKxcubIAqs4/BXWud1e1a9dG+fLlM13Wrl073Lp1Cz///DOSk5Ph5+enUXVOnv+pzgcDBw5EqVKlsHTpUtdldzbvpYeW+vXro3nz5nj11Vdx7do1AM6m2D179mDPnj2uLoXdu3ejZs2aWLp0KaKiotCoUSPs2LEj264Cu92Od999F02bNkWTJk0wduxYxMTEuK7Prksm/fjpj5XeCjN48GDXbe+8n9VqxezZs9GlSxfUq1cPDz30EObOnQtVVTM91htvvIG5c+eiffv2qFevHvr164eDBw/e9TVUFAVLlizBI488gvr166N9+/b46KOPYLVaATi7SNJfz44dO+bYxVSjRg3UrFkz02WdOnWCLMvYtGlTpstjY2Oxa9cudOvWLctxzp49ixdffBGtWrVCw4YNMWjQIPz555+ZbhMfH49x48YhMjISTZs2xZQpUzK9Fuk2b96MPn36oF69emjVqhXeffddpKSkuK6fOXMmOnXqhFmzZiEyMhKtW7dGfHw8LBYLpk6dioceegjh4eFo1KgRhgwZ4gpRM2fOdAWDjM2wqqpi7ty56NSpE8LDw9G5c2csWrTI9XgmkwkVK1bM8jplNHfuXFSvXh1PPvlklusqV66M1157DREREa6+35iYGLz99tuIiopCeHg4IiMj8fzzz+PixYuu+50/fx7Dhw9Hs2bN0KBBAzz++OP4/fffMx37xIkTeO6559CoUSM0atQIzz//fJYm/a+//tr1HmzTpg0mTZqUaxPyqVOncODAAbRv3x49evTApUuXsG3btky3Se/iWr9+PUaMGIGGDRuiZcuW+PTTT5GUlITx48ejcePGaNmyJaZMmZKp3zsxMRHvv/8+OnbsiHr16qF79+5Yvnx5puNHR0djxowZmDx5Mlq2bIn69evj6aefxtmzZzPdbtWqVejatSvq1auHHj164I8//kCdOnUe+At63bp16NOnDyIiItCqVStMmDAB8fHxrutnzpyJ6Oho/Pbbb+jSpQsaNGiAxx57LNcuzvT34722bMyfPx8BAQF4+eWXs1xXrFgxvP766+jQoYPrs5LbOQLI/VwHOANqnTp1cODAATz++OOoV68eoqKiMnUXpH82Zs2a5fp3Tp/TO8/1VqsVH374Idq1a4fw8HA88sgjWLduXaaaDh8+jCeffBKNGzdGREQEnnrqKfz99993fb3y8hnL6/l3z549ePzxx13dszt37rzrY+dFQEAAJEnK1BK7b98+DBw4EA0aNEBkZGSW7yZVVTFt2jRER0cjPDwc0dHRmDp1Kux2O4Dsfw55IoqIgQMHioEDB+Z4/ZgxY0TdunWF3W4XQggRFRUlxo4dK4QQYt++faJ27dpi5syZYteuXeKHH34QrVq1EgMGDBBCCHHy5EnRq1cv0atXL7F//36RmJgodu3aJcLCwkSrVq3Ezz//LFatWiWSk5PF2LFjRVRUlOtxo6KiRO3atUW/fv3E5s2bxXfffSciIyNFnz59hMPhyLH29OPv2rVLJCYmisWLF4uwsDCxePFicfLkySz3U1VVPPXUU6Jhw4biiy++ENu3bxdTp04VtWvXFm+++Wam16lx48biscceE5s2bRIbN24UHTp0EG3btnXVk53x48eLunXrik8++URs375dzJ07VzRo0EAMHTpUqKoqzp07J6ZNmybCwsLExo0bXTXezYULF0RYWJhYsWKFGDZsmHjqqacyXf/tt9+Kjh07Znot0n8eERERonfv3mLdunVi06ZNYtCgQaJu3bpi9+7dQgghFEURffv2FS1atBDLly8XmzdvFv369RN169bN9PNZvXq1CAsLE6+88or4/fffxTfffCOaNm0qnnzySaGqqhBCiBkzZog6deqIvn37iu3bt4s1a9YIIYR44YUXRIsWLcT3338vdu/eLb777jvRqlUr8fDDDwtVVcWVK1fE+PHjRVhYmNi/f7+4cuWKEEKIt956S9StW1fMmDFDbNu2TXz88ceiVq1aYtasWbm+ZkIIcf36dREWFiY+/PDDPN1eVVXRt29f0alTJ7FmzRqxa9cu8fXXX4uIiAgxdOhQ1+vVpUsXMXjwYLFlyxaxfft2MWzYMFG7dm1x9uxZIYQQp0+fFhEREeLRRx8VGzduFOvWrROPPPKIaNWqlbh586YQQoiffvpJ1K1bVyxcuFDs3r1bfPvtt6Jhw4ZizJgxd63xgw8+EJGRkcJqtQohhOjUqZN47rnnMt0m/f3SuHFjMW3aNLFz507x8ssvi7CwMNG5c2fx9ttvi507d4qJEyeKsLAwsW7dOiGEEKmpqaJ79+6iRYsW4ttvvxVbt24VEyZMEGFhYeKzzz5zHT8qKko0btxYDBs2TGzZskX8+OOPIjIyUjz22GOu26xatUqEhYWJN954Q2zdulXMmjVLNGzY0PU+zovsPu+zZ88WNWvWFG+//bbYunWrWLJkiYiMjBSPPPKISE1NFUI434cNGjQQTZs2FV9//bX47bffXO/7I0eO5Ph4H3/8sWjYsKF4/fXXRWRkpAgPDxfPPPOM+Pfff3O8j6qqol69emLUqFF5ek5C5H6OyOm53/n5XrFihahZs6Zo3769WLBgQaaf89atW4UQQuzfv1+EhYWJ8ePHi/3797ten+w+pxnP9aqqiqefflpERESIr776SmzdulW89dZbIiwsTKxatUoIIURiYqJo1qyZGDVqlNixY4f47bffxGOPPSYaNWokEhIScny9cvuMpT//3M6/hw8fFnXr1hVPP/202LJli1i8eLFo1qyZCAsLEzNmzMjx9V+xYoUICwsT586dE3a7XdjtdmGz2cTNmzfF999/L8LDw8ULL7zguv2ePXtcj/Prr7+KVatWifbt24tu3bq53nOff/65aNq0qVi+fLnYvXu3mDt3rqhdu7aYPn16jj+HvChSXTl3ExoaCrvdjri4OISGhma67s8//4TZbMawYcNgNBoBAMHBwTh06BCEEKhevXqOza/9+/fP0m97p5CQEMyfPx++vr6u/z///PPYunUroqKicq3d39/f1RxcvXr1bLtwtm7dip07d+Ljjz92tTC0atUKZrMZ06dPx+DBg1GjRg0AzkGq8+fPdz2n5ORkjB07FkePHkV4eHiWY586dQrLly/HK6+8gmHDhrmOXbJkSYwZMwZbt25Fu3btXN1Y2TUl5ubhhx/G+PHjM3XnrF27Fl27ds1y21mzZsFoNGLhwoWu59C+fXt0794dH374IZYvX46tW7fi4MGDmDdvHtq2bQsAaNGiRabWLCEEPvroI7Rp0wYfffSR6/LKlSvjqaeewu+//4727du7XrOxY8eiSZMmAACbzYbk5GS8+eabrhojIyORlJSEDz74ADdv3kTp0qVRunRpALffN2fOnMF3332Hl19+2fVatm7dGpIkYc6cOejfvz9CQkLu+lpduXIFAPL8Gl+/fh0+Pj6Z6m/WrBnOnz/vGnR869YtnD59GiNGjEC7du0AAPXr18esWbNcY3xmzZoFHx8fLFiwwPW6t2jRAh07dsQXX3yBsWPHYs+ePShfvjwGDBgAWZYRGRkJX1/fTL/538nhcGD16tXo3r276/PXu3dvzJw5E1euXMkyTqZNmzZ46aWXADhb4NasWYPixYtjwoQJAJzdWT/99BP++usvPPzww1i5ciVOnDiBpUuXIiIiwnUMh8OBTz/9FP369UNwcDAAIDAwEJ9++il0Oh0AZyvSzJkzERsbi5CQEEyfPh1RUVF49913XccxGAyYOnVqnn4W2YmPj8dnn32Gxx57zPUcACAsLAwDBgzAihUrMGDAAABAamoqJk2ahF69ermea8eOHTF37lxMmzYt2+MfO3YMKSkpCAwMxOzZs3Hp0iXMnj0bAwYMwA8//JBtl2FsbCysVmue32N5PUfklRACI0aMwH/+8x8AQOPGjbFp0yZs2bIFbdq0cX2eSpcunemcfOfn9E47d+7Etm3bMG3aNNfntk2bNkhNTcVHH32E7t2749SpU4iNjcXgwYPRqFEjAEDVqlWxbNkyJCcnIyAgIMtx8/IZy1jj3c6/c+bMQfHixfHZZ5/BYDAAcH5njB49Ok+vXadOnbJcFhoaiv79++PFF190XTZ16lRUqVIFc+bMcb3fGzRogG7durnec3v27EF4eLhrbGNkZCR8fHxcr0FOP4fcsCsnjUhr1s1uQGHTpk2RmpqK7t27Y+rUqdi3bx9at26NkSNH5joAsXbt2rk+drt27VyhBHA2Gev1euzdu/cen0XO9uzZA71enyUkpY+p2bNnj+uyjEELgOvElJqamuOxAWTpUunWrRt0Ol2+zJbp2LEjdDqdqzvn+vXr2LdvH7p3755tPVFRUZmeg16vR7du3XD48GEkJydj3759MBgMaNOmjes2vr6+mU6Op0+fxtWrVxEdHQ2Hw+H607RpU/j7+2PHjh2ZHjfjz9poNGL+/Pno2rUrrl27hl27dmHp0qX47bffACDHAbu7du2CECLLY0ZHR8NqtWbpjsqOXu/8fSO7bqnslCpVCgsXLkTjxo1x8eJF7NixA4sWLcJff/3lqjM0NBTVq1fHW2+9hbFjx+Knn36CqqoYN26cK9Du2rULkZGRMJvNrrr9/f3RpEkTV1Nz8+bNcebMGfTp0wezZs3CoUOH8Mgjj9x19tiWLVtw8+ZNdOzYEQkJCUhISEB0dDRUVcX333+f5fbp4SK9bsAZotJJkoSgoCAkJiYCcL5fypUrl+l+gPOzYbVaceDAAddl9erVc52kAbiCZWpqKs6dO4fLly9n+Yxl19V4L/7++2/YbLYs7/UmTZqgXLlymT67er0+0+3MZjPatm1713PJ6NGjsXjxYowbNw5NmjRBz549MX/+fCQmJmLhwoXZ3if9NVAUJU/PoSDOERl/XkajEcWKFcvUxZqTu52T//jjD0iShHbt2mX5/N24cQMnT55EjRo1UKxYMQwfPhwTJkzApk2bEBoaitdee831frhTXj5j6XI7//7555+uwJvuoYceyvS+vJvPPvsMy5cvx7fffov//Oc/MBgMePHFFzFu3DjX2JLU1FQcOHAA7dq1gxDC9TpUqFAB1apVc537mjVrhh07dqB///744osvcOrUKQwcOBA9e/bMUy05YYtJmmvXrsFsNrt+M8ooIiICc+fOxYIFC/DVV19h7ty5CA0NxfDhw3OdjpsxcOQk4whpwDkLJSQkBAkJCff0HO4mPj4eISEhWd686Y+dfpIGAB8fnyz1ADl/0aX/tnvn89Dr9QgJCcl07Pvl7++Ptm3bumbnrF+/HtWrV0eNGjWynNTi4+OztHoBzi8pIQSSkpIQHx+P4ODgLMEy43NIH6z79ttvu2ZKZHT9+vVM/79zwNi2bdvwv//9D6dPn4afnx9q1arlej+IHOb1pz9mTl9m6eOa7qZMmTKQJAmXLl3K8Tbx8fHQ6/WumlevXo2PP/4YV65cQXBwMGrXrg2z2ey6vSRJ+PLLL/HZZ59h06ZN+OGHH2AwGNCxY0e8/fbbCAoKQlxcHNatW5elPx64Pauka9euUFUV33zzDT799FPMnDkT5cqVw6uvvppt6xcArFixAgAyDeJNt3z5cowYMcIVxgBkO8Pibp/D+Pj4LO9d4Haoyfg5vNtnI73vvXjx4tke536lf75yek9n/HyFhoZmei3S60l/X2Unu7El6V9Ax44dy/Y+QUFB8PPzw+XLl3M8bkpKCux2O4KCggrkHJHx/Qk4fxY5fa4yutvAzri4OAghXC0hd7p+/Tpq166NJUuW4LPPPsPPP/+MZcuWwWw2o2fPnnjzzTddrXp3yu0zli6382/6uTyj9NcxL8LCwlwtXY0aNYLD4cCECRPg7+/vOu8kJCRAVVXMmzcP8+bNy3IMk8kEAHjmmWfg5+eHFStW4KOPPsKUKVNQo0YNvPnmm2jevHme6skOgwmcTWe7d+9Go0aNckydbdq0cTXp7dq1CwsXLsS7776LBg0aZPpt7H7cedJQFAWxsbGZTnB3/maSl98MMgoKCkJsbCwURcn0HNO/XPP6ps7p2ABw48YNlCtXznW53W53NXHnh65du+K1115DTEwM1q1bl+OXd1BQEG7evJnl8vS1L0JCQhASEpLt65HxZxEYGAgAGDNmDCIjI7N9nJycP38ezz//PDp27Ig5c+agQoUKkCQJS5YsyTJoM6P0x/z666+zPYGWLVs2x/umCwkJQd26dbFt2za89tpr2bbqzZo1y9WCc/bsWYwdOxaDBg3C008/7foN7cMPP8zUQlOqVClMmjQJEydOxLFjx7B+/XrMmzcPISEhmDhxIgICAtCyZUsMGTIky+Nl/LLs3r07unfvjsTERGzfvh3z5s3Da6+9hsaNG2fpNrh58ya2bt2abZfo33//jY8//hi//fZbts3TeRUUFIRz585luTzj+yUv0n9bvnONmAddMyb9fXbz5k1UrVo1S40ZZ7hlF0Bu3ryZJSylczgc+Omnn1C5cuUsLUYWi+Wu05Rbt26N3bt3w2q1ur6oMvruu+8wefJkLF++/J7OEQ96rnsQAQEB8PX1zbGlqFKlSgCcXTdTpkyBoig4ePAgfvzxR3z77beoWLEinnnmmSz327dvX54+Y3kRHByc5fwmhLhrd+jdvPnmm9ixYwcmTZqEZs2aITQ0FH5+fpAkCU899VS259n08CTLMgYMGIABAwbg1q1b+P333/H555/jhRdewI4dO3IMablhVw6AZcuW4caNGzkudDV58mQ8+uijEELAx8cHUVFRrsXU0n9jeJBpizt27Mg0RXbDhg1wOBxo1qwZAOdvgFevXs10nzvfzLk140VGRsLhcGD9+vWZLl+9ejUAZx/t/Ur/0l67dm2my9euXQtFUR7o2BlFRUXBaDRi8eLF+Pvvv3MMJk2bNsVvv/2WaaaHoihYu3Yt6tWrB6PRiBYtWsDhcGDz5s2u29hstkzdM1WrVkXx4sVx8eJF1KtXz/WnVKlSmDp1Ko4cOZJjrYcPH4bVasWwYcNQsWJFVzhIDyXpv9nd+b5J73+OjY3N9JgxMTGYPn36XX/zzejpp5/GiRMnsHjx4izXnTp1CitWrEDLli0RGhqK/fv3Q1VVvPDCC64TpqIoru4XVVWxf/9+tGzZEgcPHoQkSahduzZGjx6NsLAw12cgMjISp06dQu3atV11h4eHY8GCBa4uuJdeegnPP/88AOeXwMMPP4wRI0bA4XBkaYECgB9//BEOhwNPPvkkmjVrlunPk08+CX9//0yz6e5H06ZNcenSpSzryaxevRoGgyHPv3iULl0aFStWzDJ7bOPGjQ9UX4MGDWA0GrFmzZpMl+/btw+XL1/O9Nu9xWLJFHwtFgu2bt2KFi1aZHtsvV6PWbNm4cMPP8x0+T///IPz58+7zkHZGTp0KOLi4rJd9+LGjRv48ssvUb16ddStWzfP54i8nOvy6n7OyZGRkUhJSYEQItPn78SJE5g9e7brHNq8eXPcuHEDOp0OERERmDRpEgIDA3NsQcrLZyyvWrRoga1bt2bqWt+2bZtrJsy98vf3x7hx45CQkOAaC+Xv7486derg9OnTmV6HGjVqYObMma5W6n79+rnGUxUvXhx9+vTBgAEDkJCQ4Dr/3s/PoUi1mCQlJbmmdKmqitjYWGzfvh3Lli1Djx498NBDD2V7v+bNm+Orr77C66+/jh49esBut+OLL75AcHCwq7kqMDAQ+/fvd00NvBc3btzACy+8gEGDBuHs2bP4+OOP0apVK9fJJCoqCr/++ivef/99REdHY9++ffjhhx8yHSN9sNGWLVsQFBSUpXm2bdu2aNasGd58801cu3YNtWrVwp49ezBv3jz07t37gdY8qV69Onr37o0ZM2YgNTUVTZs2xdGjRzFr1iw0a9Ys0ziOB5E+BmTu3LmoX79+jmuhjBw5Elu3bsXgwYMxbNgwGAwGLF68GBcuXMAXX3wBwPnhbt26Nd58803cunUL5cqVw8KFCxETE+P67VKn02H06NGYMGECdDodoqKikJCQgE8//RTXrl1D3bp1c6y1bt260Ov1mDJlCoYOHQqbzYaVK1diy5YtAG7/FpjeQrJmzRo0aNAANWvWRI8ePfDWW2/h0qVLCA8Px5kzZzBt2jSUL18elStXztNr1bVrV+zcuRPvvvsuDhw4gC5dusDX1xcHDx7EV199hZCQENcJJf2L95133sGjjz6K+Ph4LFmyxNWMn5KSgjp16sBsNmPMmDF44YUXEBoaip07d+Lo0aOuqeojRoxAv3798Nxzz+GJJ56AyWTCsmXLsHnzZsyYMQOA87M0ceJETJ48GW3btkVCQgJmzZqFypUrZ9ulsHLlStStWzfb5202m9G5c2esXLkSFy5cyHW8V0769OmDb775Bs8//zxefPFFlC9fHr/++itWrFiBkSNHun5GuZEkCS+++CJeffVVTJw4EZ06dcKxY8cwe/ZsAPf/y0twcDCGDRuG2bNnw2AwICoqChcvXsT06dNdn72Mxo0bh5deegnFixfH/PnzkZKSctfF6F544QWMHTsWY8aMQc+ePXH58mVMnz4dtWvXznLsjBo2bIhRo0bhk08+wb///otevXohJCQEJ0+exPz582G1Wl2hJa/niLyc6/IqMDAQf/31F/bu3ZvjYNc7tWvXDk2bNsWIESMwYsQIVKtWDQcPHsSMGTPQpk0bFCtWDI0aNYKqqnj++ecxbNgw+Pn54eeff0ZiYmKO3yF5+YzldZG3559/Hps3b8bTTz+NZ555xrUoWsYxJ/eqa9eu+Oabb7Bq1So88cQTqF+/vmsA/iuvvIIePXpAURR8+eWXOHDgAEaMGAHAGeq//PJLhIaGIiIiAteuXcNXX32FyMhIV2vbnT+HPH1O8zx/x8MNHDhQhIWFuf7UrFlTNGrUSPTr108sW7bMNV0tXcYpZEI4pzn27t1bNGzYUERERIhnnnlGHDt2zHX9H3/8Idq3by/q1q0rVq9enWWKW7rspgt/8MEH4o033hANGzYUkZGRYtKkSSI5Odl1G4fDIaZMmSJatmwp6tevL55++mnx559/Zjq+oiji5ZdfFvXq1RPdunVzPeeMU+9SUlLEBx98INq0aSPq1q0rOnfuLL744guhKEqm1ym36XrZcTgc4tNPPxUdOnRwTbn9+OOPhcVicd0mfbrahQsXcjxORhmnC6dbv369CAsLE1999dVd6zty5Ih45plnXD+vJ598UuzduzfT8VNSUsQ777wjmjVrJho2bCjGjx8v3n333Uw/HyGEWLt2rejdu7cIDw8XkZGRYvjw4Zl+9jNmzBBhYWFZ6v/5559Ft27dRL169UTr1q3FyJEjxZ49e0TNmjXF4sWLhRBCXL16VTz66KOibt26YuLEiUIIIex2u5g1a5brtWzbtq2YOHGiiI2NzdPrltHq1avFwIEDRYsWLUT9+vVFly5dxJQpU0RMTEym2y1evFh06NBBhIeHi/bt24uxY8eKTZs2ibCwMLFlyxYhhBBnzpwRI0eOFC1atBB169YV3bp1E0uXLs10nMOHD7umWzZs2FA89thjYvPmzZlus3DhQtG1a1dRv359ERkZKUaNGiUuXryYpfa///5bhIWFiS+++CLH57d7924RFhYmpkyZku37RQiR7TTKOz/ft27dEuPHjxfNmzcX4eHhokePHuL777+/632EyP49vXTpUtGpUydRt25d0atXL/H999+LsLAwsWHDhhyfR0Y5LW3wzTffiK5du4q6deuKVq1aiUmTJom4uDjX9envw02bNomoqCjRoEEDMWTIEHH06NFcHzP9Pd6gQQPRvHlz8dZbb+X5/bZlyxbx7LPPilatWonw8HDRqVMnMWHCBHH58uVMt8vLOSIv57qcziN3/ny+/PJL0aRJE9GgQQNx6dKlHD+nd94vOTlZ/O9//xNt27YVdevWFdHR0WLq1KmZ6jxw4IAYOnSoiIyMFPXq1RN9+vQRGzduvOvrlJfPWF7Pv4cPHxYDBw4U9evXF1FRUWL16tWiZcuWeZounNP59+jRo6J27dri0UcfdX0f7ty5U/Tv31/Ur19fNG7cWAwePDjTedRut4sZM2aIjh07ivDwcNGiRQvxxhtvZDq/3PlzyAtJCO5yRESUH9asWYM6depkGguyZcsWPPfcc/jxxx8LdHn29AX7jh8/XmCPQVQYilRXDhFRQVq9ejWmTZuGl156CWXKlMG5c+cwY8YMREZGarZnDJGnYTAhIsonkydPxtSpUzFlyhTExMQgNDQUXbp0ybRwFRHdHbtyiIiIyG1wujARERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCHsXhcODrr79Gnz59EBERgebNm2Po0KHYtWuX6zY1a9bEypUrczzGzJkzER0dXRjlEhHRPWIwIY9htVoxePBgLFiwAIMGDcKqVauwYMECVKtWDUOGDMFPP/2Up+MMHToUy5cvL+BqiYjofui1LoAor6ZPn47jx49jzZo1KFOmjOvyN954A0lJSXj33Xfz1BLi5+cHPz+/giyViIjuE1tMyCPY7XasWLECffr0yRRK0r300kuYN28ezGYzAODMmTN46qmnUK9ePbRp0wZz5sxx3TZjV87FixdRs2ZNbNiwAf/5z38QHh6O6OhoLFu2zHV7m82GyZMnIzo6GuHh4YiMjMSoUaMQExNTwM+aiKjoYTAhj3DhwgXExcWhUaNG2V5fqlQp1K9fHzqdDgCwePFi9OrVC+vWrcMTTzyBjz/+GH/88UeOx3///fcxfPhw/Pzzz2jfvj0mTZqECxcuAAA+/PBDbNy4ER988AE2bNiADz74ALt27cJnn32W/0/UW6kOQLEBqh0Q6t1vq1gAeyJgiwdssYD1FqAqEEJAqCqEUJ3/zvAnJ3fe7m63JSL3wK4c8gjx8fEAgKCgoDzdvn///ujVqxcAYMSIEfjyyy9x+PBhtGjRItvbP/XUU+jQoQMAYPTo0ViyZAkOHDiAChUqoF69eujSpQuaNGkCAChXrhxatmyJEydOPOCz8hJCAVQFkHWApLt9uWoDUq8CyWedf1KvArY4wJHgDB32tD+2eMCekPb/BEA4sj5Gz7NQTGVhSU7KsQxJkiFJEiRJAtL+zvp/GZIsQ5adt3U9hQyBJePlRFT4GEzIIxQrVgwAEBcXl6fbV65cOdP/AwMDYbVac7x9tWrVXP8OCAgA4Ow+AoCePXti586d+Oijj3D27FmcPn0aZ86ccQWVIkNVAKiAbHD+X7ECCceBxBNAynkg+TyQcuH235brAAqvhcLZknIPd5CktIDiDCqyrHOGFp3sCjnO44q0mzOwEBUGBhPyCBUqVEBoaCj++usvdO3aNcv1//77L9577z2MGzcOAFxdOhndrRnfaDTmePsJEyZgw4YN6NWrF6Kjo/H8889j/vz5uHbt2v0+HfcmBCDsgJz2mggFSDoDxO4H4g4BcYeB+ENA0uncu2XcmRBQFQWAAiWbqyVJgiTroNPpIOt00On0kNJaWhhWiAoOgwl5BFmW0bdvXyxatAhPP/10lgGwX3zxBQ4dOoRy5crl6+PGxsZi2bJlmDZtWqZAdPr0afj6+ubrY2lGVQAIQNY7x4HE7AVu7ATiDjqDSMIxQM25tclbCSEgFAdUJXPXkpwhqMg6nbOlhWGFKN8wmJDHGD58OLZt24b+/ftj1KhRaNSoEeLi4vDtt9/ihx9+wLRp0/I9LPj7+yMgIAC//PIL6tatC4vFgsWLF+Off/5BgwYN8vWxCo1qByQ9IEnO8R3XfwdubANu7ABi/nSODaEcqYoCVVHgwO3XSZbTwopeD51eD1nWMagQ3ScGE/IYPj4+WLx4Mb788kvMmzcPly9fhtlsRp06dbBo0aICGfNhMBgwffp0fPDBB3jkkUcQFBSEZs2a4eWXX8acOXOQmpoKHx+ffH/cfKUqzhAiyc7xH9d+dYaQG9udY0QKcRyIt1JVBaqqwGF3hhVJktNCigF6vbMLiEGFKG8kwflzRN5HtTsHqap2ZxC59BNwaa1zdown6nkWjlxm5bgzWda5gopOr2fXD9FdsMWEyBsI4RykKusByzXg4o/OIHLtF8CRrHV1RZ6qKlBtCuw251gdWaeHXq+H3mCEpGO3D1FGDCZEnkqoAIRz7ZCYP4FLPwKX1gCxf2tdGeVCVRywKQ7YrBZIsgy9wQgDQwoRAAYTIs+jOpwtIwnHgNMLgHPfAikXta6K7pNQVditFtgZUogAMJgQeYb0MSOpV4AzC4GzS5xTecmr5BZSGFCoKGAwIXJX6S0j9kTg3DLg7GLg+lZwFk3RcGdIMRhNzpCSNsOHIYW8FYMJkbtJDyTXfgNOfe4cxFoEFzij24SqwmZJhc2SCr3BAIPRBJ3ewIBCXonBhMgdpC/trqQC/34BnJgNJJ7UtiZySw67HQ67HbIsQ280wWA0ua5jSCFvwGBCpKX0sSOJp4DjnwBnFgEOz1yrgwqXmqkVxQiDyQSdTs9WFPJ4DCZEWlAdzpVYL/8MHJ/uXASN6D457DY47DbIsg4Gkwl6g3MDRgYU8kQMJkSFSSiAIxU4+anzT/I5rSsiL6KqCqypKbBZUmEwmV3dPAwo5EkYTIgKmhAABGBPAI5+BJyYBdjjta6KvJgQwtnNY7XAaDTBYDIDYEAhz8BgQlRQ0gOJNQY48oFzhg2Xh6fCJARsVgtsVgsMJjOMRpNzQ0cwpJD7YjAhym/pgcQWCxx+1xlIFIvWVVERl74misFogtFkdq2Gw4BC7obBhCg/CRWwxQH//A84+RmgpGhdEVEmdpsVdpsVeqMRRpOP63IGFHIXDCZE+UF1OKf+/vOec9ovu2zIzTlsNjhsNmcLitmH04zJbTCYED0I1e7c3ffsIuDv8YDlqtYVEd0Tu80Ku90GI2fxkJtgMCG6H0JxBpKbu4E/XwRi92tdEdH9S5vFY7daYTT7wGA0sgWFNMNgQnSvhAqkXAT+HA1cXKV1NUT5RggV1tRk2G0WmHx8uZIsaYLBhCivVIdzds3ht4HjMwDVpnVFRAVCVRSkJiVCbzDCZPaBALt3qPAwmBDlJn2339MLgAPjAesNrSsiKhTpS907u3c4/oQKB4MJ0d0IBUi5AOx6Cri+VetqiDRhs6TCYbPB5OsHWZYZTqhAMZgQZUd1OFfIPPoRcGgSF0ijIk9VFaQmJThXkOUS91SAGEyI7iRUIOEY8MeTQOxfWldD5FbsVgsUuw0mHz/IOh3DCeU7BhOidKodgAAOTnS2lAiH1hURuSVVVZGanOhanA1g6wnlHwYTonS39gK7hgCJJ7SuhMgj2G1WOBx2mH18odMbOLWY8gWDCRVtqgOAAPa/Chyf6fw3EeWZUFWkJidBbzQ5pxYznNADYjChoktVgORzwPa+QOzfWldD5NEcNisUux1mX449oQcja10AUaETqvPvs4uAnxswlBDlEyGcY0/sNmva/9kCSfeOLSZUtKh254qtu58Fzn2rdTVEXslmSYXicMDs68euHbpnDCZUdAgViDvs7LpJOq11NUReTXHYkZIYD7OvP7t26J6wK4e8n1Ccfx/7GNjYjKGEqJAIIdi1Q/eMLSbk3VQ74EgBdvQDrqzXuhqiIoldO3QvGEzIe6kOIOkMsKUrkPSv1tUQFWnOrp0EztqhXLErh7yTUIGrm4ANTRlKiNzEnbN2iLLDYELeJb0P++gU4PfugD1B23qIKAubJRXW1BQIITjuhLJgVw55D9UBQAX+eBo4u1jraojoLuw2K1RV5bgTyoLBhLyDagdsscDvjwC39mhdDRHlgeKwIzUpEWY/fwDcCJCc2JVDnk8ozvVJfo5gKCHyMKqqIDUpAaqqsFuHADCYkKcTKnBpLbCpJZB6WetqiOg+CCGQmpQIxWFnOCEGE/JwZxYC2/oAikXrSojoAVlSkjljhxhMyIMdnQrsGnp7ZVci8nicsUMMJuRZ0k9Uf48D9r8KgCcuIm9jt1lhSUkGwGXsiyIGE/IcQgUggN3DgCMfaF0NERUgxWFnOCmiGEzIMwjF+Wf748C/87SuhogKgTOcJAFgOClKGEzI/akOQLUBW7oBF5ZrXQ0RFSLF4WA4KWIYTMi9qQqgWoFfop173xBRkaM4HLAkM5wUFQwm5L6EAggb8Ftn4OYurashIg0pigOpyYkAGE68HYMJuSehOltLtnQHbuzQuhoicgOqojCcFAEMJuR+hOpsLdnaE7j2q9bVEJEbURUFqUmJALjOibdiMCH3kj4lePtjwJX1WldDRG7Iub8Ox5x4KwYTch/pJ5idA4CLP2haChG5N1VVOCDWSzGYkPuQJGDXEODcMq0rISIPoCgO1yJs5D0YTMh97Bnu3JSPiCiPFIcdVkuq1mVQPmIwIfdw8C3g1BytqyAiD+SwWWFjOPEaeq0LoCJOKMDZJcDhd7WuhIg8mM1qgSTL0BuMkCRJ63LoAbDFhLSjOpxrlOx+RutKiMgLWFNToDjsHAzr4RhMSBuqHUg+C2zt5fw3EVE+sKQkQ1UUhhMPxmBChU91APZE51LztlitqyEiL5OakgShqgwnHorBhAqXUJ1/fu8OJJ3Wuhoi8kZCIDU5CRBcHdYTMZhQ4ZJk4I9BwM0/tK6EiLyYECrXOPFQDCZUuP4eB5z/TusqiKgIUBQHpxF7IAYTKhyqApxbChz5QOtKiKgIsduscNht7NLxIAwmVPBUO5B4ktOCiUgTlpRkDob1IAwmVLCECqg2YGsPwMH+XiLSRmoKN/zzFAwmVKCEEMCJWc4WEyIijQjVORiWq8K6PwYTKjBCqIBqgaj9KtD0M63LIaIiTnHYYbOkstXEzTGYUIEQqgIknIKy81mIq1uBGsMhuv4D6AO1Lo2IijCb1cJl690cgwnlu/SWEuWfDwElBeqx6VCOzQICwyB6XwZKtNW6RCIqwiwpKRBcfM1tMZhQvpMkGeqRjwHrTddl4spmKH++BjiSITr8AtTnbsJEpBXBxdfcGIMJ5SshVKgXfoK49WfWK5POQNk32nld+BvAQ7sA2Vz4RRJRkacqDthtVraauCEGE8o3QlUAy3WopxflfCNHMtTD70M59SVE8aYQfa4AIQ0LrUYionQ2SyrXN3FDDCaUfyQJypGpznVLciEurIay/w3nvzvvAWq9XNDVeZyrCXo0+aAadp/1yfE2X+8KRs23w3AxTp/r8f69acDwb8ui0fvVEDm5Gp5fVhYXYg2ZbvPJr8XRYkpVRH1SBSv/zjxQWQigz9yKWH0w4P6eEJEbYpeO+2EwoXwhhApxbjmQcA/rlcQfhbJnFET8UYiIj4CojeBb0ulKvB5DF5VDolWX423O3DLg419C83y8/l9WRFyKDh8/ehVvd7+GUzeMGLqoHCx257oOW0744cs/QjCu8w0MbRGLt34qhZPXja5jrD0cAFUAj9RLfLAnR+RGVFWBzcopxO6E3wL0wISqAMkXoJ69j8357PFQ/54EcXYZROmOEL2vAP7V8r9ID6EKYOXfgeg1pxJuJefcCqKowLgfSiPYV8nTcWduKQ5/k4KvBl9E+7BkPFw3CR/1uYJUu4zDl53jfHae9kXLqinoUT8Rg5rFoVoJG/aktdbYFGDar8Xxcoeb4PpU5G3sVitURWE4cRMMJpQPhLMLRzju8/4q1LNLoR58B9D7QnQ7AlQdkq8Veorj10yYuKYkejVIwIe9r+Z4u/k7Q3AzWYdhrWNyPaYQwMaj/ng0IgE+htsn3nplrdj+ymk0qeTcfVWSAJP+9vUGnYAinCnkm73BKBvsQNvqKff71IjcWnqXDsOJ9hhM6IEIIaCeWQIkn3/wY8Xsh7L3JSD5HESzL4BW99EC4+HKBNmx6cWzGNf5BswGNdvbnLxuxKzfi+N/Pa5lCho5uRinR6JVh7JBdry9tiQiJ1dDvXer4/+WlsXVhNutMg3Lp2LPWR+cuWXAgYtmnLhmRKMKqUi0yPh8WzG81vHmXR6FyLMJocKamsIl690AgwndN+fqricgzv+Yfwe13oTy1ziIi2uBSv+B6HkOMJfOv+O7uWAfFaUDc255cqjA2B9K4z8R8YisnJqnY8amOMPHR5tL4FqiHh/3vYJ3e1zDkSsmDP66PFJszhNxlzpJ6FQ7Cd0/rYzBX5fHqKhbCC9rxbwdIYislIq6ZSx4f0MJdJlVGaOXl0ZMCk8f5F0cdhscdhtbTTTGMws9EOXYDADZ/2Z/34QD6qn5UA5/CJhLQvQ8A5Trmb+P4aE+31oMCRYZr9xD64UtbRhKqL8Dsx6/jNbVUtCzfiKm/+cKzsUY8dMh5+wbSQLe6X4d+8edwl/jTuGZVrG4lqDH4j3BeCn6JpbsDcbO076Y+dhlyDIwaU2pgniKRJqypjq7KxlOtMNgQvdFCBXi/Eog5VLBPcaNnVD2vgxYbkC0XQE0/bzAHssTHLliwufbi+G/3a/BqBdwqM7BsgCgqhKUHPKhv9F5RdvqyZAztFI3LG9BgEnBkSumTLc36gV0aWeG6b8VR/fwRFQNtWPDEX/0qJ+AGiVteLJZHH457p/jYxJ5KiEEbJZUduloKPfFD4juIIQKWGOgnvu+4B8s9TKUfa9ADhsOqcZzECXbQtrQHHAkFPxju5lfjvvDrsh4alGFLNd1mlkFkZVSsOipi1muq1DMDgkCNkfWE62iSjDnME7l5HUjfj4SgPUjzwAAbiXrEezjbH4JNCtwqBJiU3QI9c/bzCAiT2G3WaE3GiHLOgYUDTCY0D2TJBnKic/ztJBavlBtUI/NgIj7B3LN4RB9LkPa0h24vqVwHt9NPNY4Du3DkjJdtuWEP2b9Xhyf9buEysWz/3n4GQWaVkrFxmMBeLnDLRjTZt78cdoHKXYZTSpmP1blo82hGNg0DqUCnMGjuJ8DN5Kcp4wbSXroJJHn6cpEnsaakgIffy4mqAV25dA9EaoC9eYeiFv7Cv+xr/4C5c8xgD0JInoT0OB/hV6DlkoFKKhX1prpT7lgOwAgrJQVVUPtrtv+fdGM8zG3V3V9ucNNXE/U4dlvyuH3k75Y+XcgXllZBg3KpSK6ZlKWx9pz1gd/X/TJNB25fVgyvv8rCFtO+OHzbcXQtkYy9DyDkJdSVYV76WiEpxW6N0KBemKedo+fdAbK3tHOYFR3HNB5DzcCzMbj8yvi063FXP+PqGDBwicvQhXAi9+VxeSNJRAVlowvBl5yjSfJaMrmUAxrHYMA8+1BJIObxaFppVS8srI07IqEt7tdL4ynQqQZmyUVEILhpJBJgq845ZEQAurphRDnV2ldCgBAqtADcrUnAXsipF86ALF/aV0SFZSeZ+EwlYUlOWvrDlFB0huMMPv6aV1GkcIWE8oTIRQg9TLEhZ+0LsXFtRGgEBCddwO1XtW6JCLyMg67DYriYKtJIWIwoTyRJB3UE3MfYNn5AhJ/DMreURBx/0BEfAhEbwLf1kSUn7gibOHiGZxyJVQFaswBiNgDWpeSPXsC1ANvOzcCLNUBos8VIKCG1lURkZdQFQ6ELUwMJpQrSdZB/XeB1mXkIm0jwANvAzpfiK6HgapDtS6KiLyEzZK3LSDowTGY0F0JVYF6bSuQdEbrUvJExP7t3Agw6SxEs3lA60JYBI6IvJ4QAnYrW00KA4MJ5Uo9vVjrEu6N9SaU/eMhLq4BKvZN2wiwrNZVEZGHs9ksWpdQJDCYUI6EUCAurQMsHrhehXBAPfUllMOT0zYC/Bco31vrqojIkwkBu9XCVpMCxmBCOVPtUM99p3UVD0Tc+APK3tGA5TpEm++ByDlal0REHsxmZatJQWMwoWwJoUI9txywJ2pdyoNLvQJl36sQV7cA1YdBdDsKGIO1roqIPJTNmspWkwLEYEJZCCGc+9G40WJqD0y1QT02E8rRmUBANYheF4GSUVpXRUQeyG61cqn6AsRgQtkQUM+vAFSr1oXkO3H1Fyj7XsuwEeAHWpdERB6IXToFh8GEslIsEJc3aF1FwUk+m7YR4B6g7lig815uBEhE9yR9wTW2muQ/BhPKRAgF4sJqQPHy3waUFKiHJ0M5OR+iWAREn6tASCOtqyIiD2KzctG1gsBgQpmpDqgX12pdRaERF3+C8td4QCgQnXcBtV7TuiQi8hAOm42tJgWAwYRcnOuWrAccXjAT514kHIey96W0jQAnA9G/gB8NIsoLO8ea5Duefek2IaBe+FHrKrRhT4B64B2oZ5dClIpydu1wI0AiyoXd5n2TBLTGYEIAnHviiCu/ALYYrUvRkApxdhnUA5MAnQ9Et8NAtWe0LoqI3Bx3Hs5fDCbkJElQz6/Sugq3IGIPQNk7Ckg8AxE5B2izQuuSiMiN2a1sNclPDCbkbC25sQuwXNW6FPdhveXcCPDCT0CFPhC9LnAjQCLKlhAqFIedrSb5hMGEIMk652Z9lJlQoP77lXMjQFNx50aAFfpoXRURuSGb1QpJkrQuwyswmBRxQgiIlMsQcYe1LsVtOTcCfNm5EWDr74Fm87QuiYjcjKo4oCgOtprkAwaTIk9AvbhG6yLcX/pGgFd+Bao9A9H9GDcCJKJM7Gw1yRcMJkWd6nDuuku5U21Qj8+CcnQG4F/VuRFg6Q5aV0VEbsJht0GoqtZleDwGkyJMqArE1d8AJUXrUjyKuPorlH2vAvZEiPYbuBEgEbnYOHX4gTGYFGGSrIN6eb3WZXim5HPOjQBvpm0E2GUfNwIkIji44NoDYzApooRQIeKPA0lntC7FcympUP+ZDOXEPIiQhmkbATbRuioi0pAQglOHHxCDSRElSTLUS0Vns76CJC6tzbAR4B9Ande1LomINGS32TgI9gEwmBRRQrFA3PhD6zK8R8JxKHtHQcQdhmjwP6DDr4Cs17oqItKAs8WEg2DvF4NJESRUB8S17YBq17oU72JPhHrgbahnvoUo2R6i1xUgoKbWVRGRBhw2G7tz7hODSREkyXqI61u1LsNLCYhz36VtBGiG6HYQqPas1kURUSGz29mdc78YTIogYYuHiOVKrwUp80aAnwNtVmpdEhEVIlVRoKoKW03uA4NJESNUBeLaFgDs/yxwro0AVwMVejs3AvQpr3VVRFRIHDab1iV4JAaTIkaSdVCvshun0AgF6r8LoBz6ADAWh+hxEqjQV+uqiKgQsDvn/jCYFCFCCIjUq0DSv1qXUuSIm7ug7BsNpF6DaL0MaDZf65KIqIAJVYXi4MZ+94rBpEhRoV79Vesiiq7Uq1D+fA3iyi9AtaEQ3Y8DxmJaV0VEBchuZ3fOvWIwKUIkSQdxjd04mlJtUI/PhnJ0OuBf2TnuhBsBEnktB4PJPWMwKSKEEBBJ54DUq1qXQgDE1d+g7HsNsCc4NwKMmKJ1SURUEISAorA7514wmBQVQoW4uUvrKigj10aAu4DarwJd/gT0vlpXRUT5TLFzMct7wWBSREiyDurNfVqXQXdSUqH+M8W5EWBwA4jel4HiTbWuiojykcNh5+yce3BPwWTQoEF4/fXsNyh7/fXXMWjQoDwfa+bMmYiOjnb9/+TJk9iyZcu9lJPrMbNz8OBBPPfcc4iMjES9evXQuXNnTJ06FUlJSa7b2O12LFiw4J4e+/Lly1i71n03xRP2RCDxlNZlUA7EpbVQ9o8DVAWi006g7jitSyKifCJUFaqqaF2Gx9CsxWTo0KFYvny56//PPfccDh06VKCPefLkSQwaNAjVq1fHokWLsG7dOrzyyitYs2YNRowY4brdmjVr8P7779/TsceOHYtt27bld8n5QqgOiJt7ALCP060lnLi9EWD994AOv3EjQCIv4bDbOc4kjzQ76/n5+cHPz69QH3PlypWoVKkSXnvtNddlFSpUgNlsxrPPPotjx46hVq1aXvfmkWQ91FvsxvEIaRsBSpX6Qq7SH+h9BdLGNkDiMa0rI6IHoDjsMJrMWpfhEQqsxaRmzZpYvnw5nnrqKdSvXx+tW7fGrFmzXNdn7HaJjo7GpUuXMGvWLFd3UGJiIt566y00b94cjRs3xuDBg7O0qCxbtgydOnVC/fr1MXz4cMTHx9+1JkmScOnSJZw6lblLo2XLlli7di2qVKmClStXYty4ca7nsHv3bqiqijlz5qBz584IDw9Ho0aN8Mwzz+D8+fMAnF1ce/bswapVq1zPyWazYcqUKWjTpg0iIiLw2GOPYfv27a7HVBQFU6ZMQbt27RAeHo4uXbrg22+/vZ+XOldCVSBi/i6QY1NBEBDnvod6YCIgmyC6HQCqP6d1UUT0ALjQWt4VaFfO5MmT0bt3b6xduxYDBw7EzJkzsXfv3iy3W758OUqXLo2hQ4di5syZEELg2WefxYULFzBnzhx89913aNiwIZ544gkcOXIEgLO75Z133sFTTz2FH3/8EY0aNcKSJUvuWs/jjz8OvV6P7t27o1+/fvj444+xbds2KIqC6tWrw2QyoWvXrhg/fjwAYPv27YiIiMDChQsxf/58vP7669iwYQNmz56Ns2fP4oMPPgDgDFkRERF4+OGHXd1T48aNw44dO/DRRx9h1apVePjhhzF8+HDXOJpvvvkG69evx7Rp07BhwwYMHDgQkyZNwr59+duyIYQKEf8PoKTm63Gp4InYg1D2jAIST0M0/RRo+4PWJRHRA1Ac7M7JiwINJr169ULPnj1RoUIFDB8+HIGBgfjrr7+y3K5YsWLQ6XTw9fVFcHAwdu3ahb///huffPIJGjRogGrVquHll19Gw4YNsXDhQgDAokWL0LVrVwwYMABVqlTBsGHDEBUVddd6KlWqhB9++AGDBg3C9evXMWfOHDzzzDNo3bo1vvvuOwCA2WxGQEAAAKBEiRIwGo2oWLEiJk+ejKioKJQrVw4tWrRAly5dcOLECQBAcHAwDAYDzGYzihUrhnPnzrnGqTRr1gyVK1fGkCFD0K1bN8yf71yK/Pz58/D19UX58uVRrlw5DBw4EF999RWqVKmSb69/Ouf4EvJIthgo+9+AuPAjUL4nRK+L3AiQyEM5HJw2nBf3NMZEr9dDVbPflVZVVej1mQ9XrVq1TP8PCAiAPQ/zuf/55x8IIbIEDZvNBqvVCgA4ceIEunXrlun6iIgIHDt29774MmXK4I033sAbb7yBCxcuYOfOnfjmm2/w1ltvoVSpUmjXrl2W+0RHR+PAgQOYPn06zpw5gzNnzuDUqVMoVapUto+R3qrTv3//TJfb7XYEBgYCAAYMGIDNmzejXbt2qF27Nlq1aoVu3bqhePHid63/XkmSDHEraxgkDyIUqP9+DRF/DHLtlyB6nIK0czBw4TutKyOie6DY7ZB8OG04N/cUTAIDA5GQkJDtdfHx8QgKCsp0mdFozHK7vDRjqaoKf39/rFy5Mst1GY95Z0gyGAx3Pe6HH36INm3aoEWLFgCcA18ff/xx9O7dG506dcLvv/+ebTCZO3cuZs+ejd69e6NFixZ46qmn8Msvv+Q4PTj9OS5ZsiTLAF9ZdjZSVa5cGRs3bsSePXuwY8cObNmyBfPmzcP777+P3r173/V53AthiwNSL+fb8Ug74uZuKHtHQ1fvdYjW30I63QXYPVTrsogoj4QQUBUFkixzXZO7uKeunLp16+Lw4cOw2TKv/W+z2XDw4EHUq1cvX4oKCwtDUlIS7HY7KlWq5Pozb948/PLLLwCA2rVrZ+kWym268R9//IEvv/wyy+VGoxFms9nVWnHnG+bzzz/H888/j0mTJuHxxx9Hw4YNcfbs2RxDVo0aNQAAN27cyFT/ypUrXWFr4cKF2LhxI1q1aoUxY8bgp59+QosWLbBu3bo8vEJ54xz0eiDfjkduwJK2EeDlTUC1IRDdT3AjQCIPwu6c3N1TMOnbty9UVcXIkSOxf/9+XLp0CXv27MGIESOg1+vRt2/f+y7Ez88PZ8+exc2bN9GmTRvUrl0bo0ePxq5du3Du3Dm8//77WLlypat7aNiwYdi0aRO++OILnD17FosWLcKGDRvu+hijR4/Gzp07MWrUKOzdu9dV/5gxY5CcnIzHH38cAODr61wW/PDhw7BYLChTpgx27NiBU6dO4fTp05g2bRo2btyYKaD5+fnh0qVLuHr1KmrUqIGoqChMnDgRv/76Ky5cuIB58+Zhzpw5qFixIgAgJiYG77zzDn755RdcunQJ27Ztw9GjRxEREXHfr2EWkgwR90/+HY/cg2qHeuIzKEc+AfwrpW0E2EnrqogoDxSHg60lubinYFKsWDEsW7YMgYGBeOGFF9C5c2e8/PLLCA0NxXfffZelK+deDBo0CFu2bMHQoUOh0+nw5ZdfIjw8HC+99BJ69OiBvXv3YtasWa5umPbt22Pq1KlYsWIFHnnkEWzcuBFDh969Wbtt27ZYtGgRbDYbRo0ahc6dO2P06NGQJAlLly5FaGgoAKB58+Zo0KAB+vXrh99++w0ffvghLBYLHn30UQwcOBAnTpzA22+/jVu3buHyZWc3Sb9+/XDixAn06NEDiqJg2rRpeOihhzBhwgR07doVP/zwA9577z1XN83IkSPRt29fvPvuu+jcuTMmTJiAJ554As89l3/TQiVJgog7nG/HI/cirm1J2wgwHqL9z0DER1qXRES5UBWH1iW4PUlw7pLXEvZEKNvzvk0AeSidGXKtFyCXbAXE7Ac2twYcKVpXlb96noXDVBaW5KTcb0vk5nwDglzjDSkrvjJeSgiF3ThFhWJJ2whwLkRwfYjeV4DizbSuiohywMXW7o7BxGtJEPFHtS6CCpG4tA7K/tcB1Q7RaTtQd7zWJRFRNtidc3cMJl5KkmSI+CNal0GFLeEklD0vQcQehKj/LtDhd24ESORmFIUDYO+GwcRLCdUBJJ7RugzSgiMR6sH/Qj2zBKJka4jeV4HA2lpXRURpVEVhV85dMJh4q+TzgGBzYdElIM4th/r3REA2QHQ9ANT4P62LIqI0DCc5YzDxQkJ1QCSeyv2G5PVE3KG0jQBPQTSZDbT9UeuSiAjO7hzKHoOJN5JkiCR241AaW2zaRoA/AOV7QPS6BPhW1LoqoiKNC63ljMHEC0mSDJF0VusyyJ0IFeq/X0M59D/AGALxyAmg4mNaV0VUZHFmTs4YTLwVgwllQ9zcA2XvS0DqFYhW3wLNF2hdElGRJISAEGruNyyCGEy8kLDcAJRUrcsoMFdj7Wg++jj2HE/OdPnvhxLx2Ptn0OTFY+g4/iRm/XQDNsfdB5epqsBXG2/h4bdOodELx9D7v6exZnd8ptskpSoYPfcimr10HH3fO42DZzK/tjfi7Wjx8nFcvJl5c0u3Zbl2eyPAqk9CPHISMBbXuiqiIkdVGEyyw2DiZYRQIRK8d+DrlRg7np1+HompmT/QO44kYeSnFxFWzoSZ/1cBQzoVx9ebY/De0qt3Pd7Mn27gkx+vo0+rYHz6fAW0qO2HsV9dxtq9t8PJ5+tu4vhFKz56phzqVPTBy/MuZgo8s9fcRI9mQSgfaszfJ1uQMm4E6FsRotd5oHRnrasiKlJUlTNzssNg4m2EgEj2voGvqiqwamcc+r53BrcSlSzXz1t/C3UqmvHu4LJoUdsPA6KK4amOxbBqZxxSrNn/VpJqU7Ho1xgMii6GZ7uEonktP4zpWwpNa/hiya+xrtv9cSwZj7UJRptwf7zSpySuxDhw/rqzdeT0VSs2/JmA57qGFswTL2DOjQBfAWzxEFFrgUYfa10SUZGhKlnPZQRwSUgvI8k6r1xY7fglK9755ir6tQtBi1p++L/ZFzJd/99BZeBQMv/mYdBLUAWyXJ7OqJew5LXKKBagz3K/RMvtE4YEwGSQXNcBgKI6jzlt1XUMii6W5RgeJeUClH2jIdccCanWaKBUFLCplfdtBEjkZlRV5cycbLDFxAuJlAu538jDlClmwM//rYax/ykFszHrB7lCCSOqlDYBcI4J2bQ/AV9tuoWuTQIR6KvL9pg6WULN8maUCNJDCIGbCQ7MW38TfxxLRr+2Ia7bNajqiw1/JSI2yYFVO+NQPECHyqWM+OtUCg6cScWTHb1gfIZigXrkIygn5kAE1eNGgESFQFXZYpIdD/41j7IjhApYbmhdRr4L9tMBftkHjIxuxNvRfqxzjE2FUANG9SyRp+Ov25eAMfMvAwDa1fPHI82CXNc93z0UL8+9hNavnkSJID0+GFIWJoOMqSuv47mHQ2G1qxj31SWcuWZDh4YBeKFHCehkz/wtSFz6GUrCKejqvQ7RaTukQ28D/7yrdVlEXkmoKoQQbDW5A1tMvI0tFhBFN4WbDDLmv1QRHz9bDga9hCc+PItrsfZc71evsg++fqUSxj9eCvv/TcFzMy+4BqUVC9BjwSuVsHd6TWyZXAMt6/hj0/4E3Epw4LG2IXh7yVX4mXWYNqw8fj2QiKW/x+byaG4u8fZGgGjwX6DjVm4ESFRAhMqZOXdiMPEyIvWK1iVoKtBXh+a1/NC5cSA+H1kBMYkKVuyMy/V+FUsY0aSGLwZEFcPrj5XCvpMp+PNU5mnBvibnx8WhCHzyww28kNYa89vBRDzRPgTVy5rQs3kwNu1PzPfnVejSNgJU/l0EUaKVcyPAoDpaV0XkdTgzJysGEy8iVAeQUvSCiaIKrN+XgKPnLZkuLxdqRJCvDjfisl9hMSbRgR93xeFWQubr61QwAwCux2Xf0rJiRxzMRgldmwQiLkmBogJBad1Mgb5yluN5LgFxfgXUvyc4NwJ8+G9uBEiUzzgzJysGE68iQViuaV1EodPJEqb9cB0f/3A90+VHzqciLllBWDlTtvez2AXGL7iClXe0qOw46ly4LaycOct9ki0qPl1zA6N7lYQkSQjx10GWgJtpYeRGgsOzZ+hkQ8QdzrwRYLuftC6JyGtwZk5W3nUGLeIkWQekFr1gAgAjuodi/IIreOebK3ioUSAu3LBh9pqbqFHWhN4tgwEANruKoxesKBWiR+kQA8oWM6BPyyB8tvYm9LKE2hXN+PNkCr7YcAuPtgpC9bJZA83Xm2+hWhkTWtf1BwDodRJa1fHD5+tuYmBUCFbuiMPA6GKF+dQLR9pGgHKVAZAqPQrR6xKkjS2AlPNaV0bk0TgzJysGEy8jLHdf6dRb9WweDLNBxvwNt7B6Vzx8TTI6NAzAS71Kwmx0NgzeiHeg/4dnMaJbKJ5/xDk+5K3+ZVA+1Ijvt8fhcowdpUP0GPlICQzplDVc3EpwYMHmGMx/KfPOvBP6l8HYry5h7JeX8VCjQPRv74XBBHBuBHh6EUT8Mch1RkM8cgLSriHAuW+1rozIY3Hwa1aS4Kgbr+LYPhiwJ2hdBnk7c0nowscB/pUgnVkC7BpcsI/X8ywcprKwJCcV7OMQacA/KCT3GxUhHGPiRYRiZSihwmG5DuWvMRCXNwJVB0E8cgoweuay/ERaY/tAZgwm3oShhAqTaod64nMoRz4GfCtA9DoHlOmidVVEHkcIdudkxGDiTRhMSAPi2lYo+14GbHEQ7dcAjT/RuiQij8JxJpkxmHgJIQSEzcNXHCXPlXIRyr6XIa7vAGqOcq55ovfXuioij6Cqgt05GTCYeAuhADa2mJCGFAvUIx9DOf45EFQXovdloHgLrasicnvsysmMwcRrCHblkFsQl9dD+et1QLFCdNoKhL+ldUlEbo2tJZkxmHgNGcIer3URRE6Jp6DsfQki9gBQ/x2g4zZANmhdFZFb4hiTzBhMvIQk6wC7F2weR97DkQT14LtQ/l0IUaJl2kaAdbWuisjtCCG4LH0GDCbehF055HYExPmVzo0AJT3Ew/uBGiO1LorIrXCMSWYMJl5E2NiVQ+5JxB2GsncUkHASoskMoN0arUsichtC5RiTjBhMvIkjResKiHJmi4Xy95sQ51cA5bo5Z+34VtK6KiI3wGCSEYOJN1HtWldAdHdChXp6MZSD7wKGIIhHjgOV+mtdFZGmOCsnMwYTbyIYTMgziFv7oOx9CUi5BNFyEdBikdYlEZGbYDDxJmwxIU9iuQ7lzzEQlzYAVQZCPPIvNwKkIoutJrcxmHgTBhPyNMIB9eQcKP98DPiWh+h1HijzsNZVEZGGGEy8iXBoXQHRfRHX0zcCjIFo/xPQeLrWJREVMraYpGMw8SYqgwl5sJSLUPa9AnFtB1DzRYiHD3AjQCo6mEtcGEy8hFAV8J1NHk+xQD36MZTjnwFBdZxTikNbaV0VUYHj2fs2BhNvwW4c8iLi8gYof411bgTYcQtgKqF1SURUSBhMvAWDCXkbWwLUy+sBoQB6X62rISpgbDNJp9e6AMov3ACKPJUMhIRDKtYIcmANwKcsYAiAJDtPT0IICCGg2DnrjLwYc4kLg4m3kPijJA9gDAaKR0IOCYfkXxkwhQI6MyTJ2XgrHBao1hiI5EuQA6pA0vtCqCosqclQFUXT0omocPDbzFvIOq0rIMosqDakYo0gBdWE5FMOMAZCkg0AnLupClsCRPIVZxCxxEK1xgCKBbJvWRjKRQGyHnabFTZLqsZPhKgQSGz1Tsdg4iUkSQdndw7bA6mQ6f2B0KaQg+tBCqjqHKiq97ndCqLYoFpiIOJOQFhjnf+2xQHZbPVuKBcF2b8ihFBhSU5kKwkVGcwltzGYeBNZz9VfqWD5V4NUvAmkoFqAbzlIxmBANkCSJOdYEHsiROp1Z/iwxkC1xuZp12vJpxSM5TtA0hlhs1rYSkJFEJNJOgYTbyLpATCYUD6QzUBoE8ghDZytIOaSgN43rWUOEKodwhILJeFfCEuMszvGGuecQXOPDGXaQg6s4mwlSUqEonCGGRU9EptMXBhMvImsB9jyTffKtwKk0EhIQbUg+VV0DlCVja4TpbAnQbXcgmo5BWGNgbDGQtiTHvhhJXMJGMp3hKw3wW61wmrJvWWFiLwfg4k3kQxaV0DuTDYCxSKcrSCB1QFzaUDvB0lObwVxQFjjoCacTeuGcYaQgtjqQF+6NXRB1SCEQGpyIhQHW0moCGNrSSYMJt5E5o+T0phLO1tBgus4W0FMxQDZlKEVJBmq5RZEwpm0WTExEPbEgq/LVBzGCp0g682w26ywprKVhIixJDN+k3kT2aR1BVTo9ECx+pCLNYQUGAb4lAb0/rcXJ1MVCFsc1MTzzlYQS2xaK4it8Cst1QK64DC2khDdiS0mmTCYeBNDgNYVUEEyFgdCm0EOqQvJrxJgKg7oTBkWJ0t1toIknk8LIDEQtgRoPoXcGAJjxYcg633SWklSta+JyI1IbDPJhMHEi0iGAJ7uvYIMBNWBVLwR5MAwwDd9ifaMi5PFQyRfSpuWm744mVXjurPSl2oGXXAtQAikJidBcXDWGFEWzCWZMJh4CSEEW0w8kT4QKBEJOTgckn8VwFwi8xLtitXZCpJ02TUYVVjjAWRdnMytGINgrNAZssEXdpvNOeNGMDYTZYctJpkxmHgLoQCGQK2roLsJrAmpeGNIgbUg+ZYFDEGArE9bnEyFsCWmLdEe6xoPAsXzFhrTlWgCfbG6bCUhyiNJZjDJiMHEawhIhkB25bgDvR9QvAnkkPqQ/Ks6W0H0vpmXaLfGQMSfTAsgMRC2+PtanMyt6ANgrNgZstEfDrsN1tQUZ0seEd2VJMkQQnCRtTQMJl5DYouJFvyrQCreNG1xsvKAIfiOJdqTIFJvOFtB0lZIzcsS7Z5GFxoBffH6AABLShIcdraSEOWVJMtal+BWGEy8haTjGJOCJJuBYo0gF2sAKaAa4FMK0PlmWJzMuUS7mvCva6dc5xLtXj4lVu8HY8UukI0BbCUhuk/prankxGDiJSRJAowhWpfhHXzLO1tBgutA8qvgfF1zXKI9bVpuPizR7ml0xRtAH9oAgARLSjIc9sJfG4XIG8iyxG6cDBhMvIkxSOsKPIusB0IiIBeLSGsFSV+cLKcl2tMXJyvi3RR6X+eMG1MQHHY7rKnJbCUhegDsysmMwcSbMJjkzFwCUmjztFaQSlmXaHekpC3RfjZtifbYtCXa+YWbka5YOPQlGoGtJET5h105mTGYeBFJNjp3hrXFaV2KhvRASDikYhGQA2sAPmUBQ4Yl2oUCYY2HmnjBtVOuaonRZIl2jyKbYajUGTpTCBwOO6wpKRDCzddSIfII7Ma5E4OJtzGXKjrBxFgMCI2EHFwXkn9lwBR6xxLtlrTFyS64VkgVtniwFeTe6ELqQF+yCQAJltQUOGzut8IskafiGiZZMZh4GclcCiLhuNZl5L+gumlLtNfMYYn2BOcS7Rmn5brhEu0eRTY597gxF4fisMPCVhKifCdzfEkWDCZeRKgOwKek1mU8GH0gENoEcnB9SAFVAHMooPO5Y4n2GIjky7c3qvOEJdo9jBxcE4aSkYAkw5qaAjtbSYgKBMeXZMVg4mUkc2nP6agIqOFcoj2oFuBbDpIh6I7FyRIhUq65AohzcTLPW6Ldo8hGGCs8BMlcHKqiwJKaAKEy9BEVFEnmqq93YjDxIpKsh/AprXUZWel8by/RHlAVMJcE9D6QpLRpuYodwhoDJf5Uhmm5cZ6/RLuHkQOrw1C6BSDJsFlS2UpCVAjYlZMVg4mXkXzLaFuAXyVIoWlLtPtWdM4SyrJE+820lVHTNqpzJGtbc1En69NaSUqwlYSokMk6HVtL7sBg4m2MIc7l6Qu6tUE23bFEe+k7lmh3OKfiJpx2BRBhjfX+Jdo9jBxQFYYyrZytJFYL7FaL1iURFSly2jmTbmMw8TKSJDt3s029mn8H9SkDKbQZpODazlYQU7E7lmhPdk7Ltf57e1quPTH/Hp8KgB7Gih0h+ZSCqiqwJidCVdl1RlSYJElma0k2GEy8kORXEeJ+gomsB4IbOJdoD6wO+JQB9H63FydTFQhbLNTEc64puVyi3fPIAZVgKNMGkHSwWy2wsZWESBOyjq0l2WEw8TJCKIBfReDmnrvf0FTi9uJk6Uu0Z1qcLMXZ+pFwNm0wagyEjUu0ezYZhgodIfuWgaqqbCUh0pis44yc7DCYeCHJr1KG+CCnLdHeCHJgmLMVxBCQYYl21blRXdJF1065qiUWUDkjw5vIfhVgKNeOrSREboTjS7InCW4L6nWEPRmw3Upbot2ceYl2awyE5ZZrhVQu0e7tZBjKR0P2KwehqrCkJkNV2EpC5A58/AOg07F94E58RbyQZPCDqjogkq+4dsp1LtHO35KLEtmvLAxlowBZD7vNCpuFi9MRuRO2mGSPwcRL2S9vhbDe0roM0oQEQ7n2kP0rOltJkhPZSkLkZiSZM3JywmDihYQQkM3FoBTBYHLw+CVMX7gFh09ega/ZgFaNqmL0U9EoHuyX7e3PX4nBI8PnZLm8WsVQrJz5LADg+q1EvDV9DQ4ev4xaVUth0gtdUalsMddtj52+huGTlmLN58Ph72sqmCeWR5JPaRjLR0PSGWGzWthKQuSm2FqSMwYTbyRUSObiQPxJrSspVEdOXcEzb36DZg0qY9q4PrgRk4QZi7bg/P9WYOGHg7O9z/HT1wEAc//7BHxMBtfl5gz//vCLzUix2PDxuD74ds0+vPnJT1j04ZOu6z/5+jc8/WgLzUOJoWw7yAGVIYSK1KREqAoXsyNyV7JOxxk5OWAw8UKSrINsDtW6jEI37evfUKtKKUwf3xey7Pyw+/ma8OG8Tbh4LQ7lSwVnuc/xM9dQqngAmtWvnONxdx04i0kjH0aLhlUQHOiDfqO/QkqqDb4+Ruz6+wzOXrqFGW/2LaBnlTvJpyQM5TpA1pvYSkLkITjoNWd8ZbyUZC5WOEvTu4m4hBTsO3we/x3V3RVKAKBji5ro2KJmjvc7duYaalYtdddjSxJgMjo/Kga9s/lVUVUIITDt698won8bGA3afJT0pdtAF1QVQgikJiVCYSsJkUfQ6fVsLckBg4mXkiQZkrk4ROp1rUspFCfO3oCqCoQE+mLc1B+xZc8pCAh0aF4TY5/thEB/c7b3O37mOiqWCcHgMQtx9PRVBPiZ0SO6Hp4f0NYVQhrULIe1v/+DBrXKY/Uvh1CjUgkE+JmxdsthOBQV3dvXK8yn6mQuDmP5TpD1ZthtVlhTUwq/BiK6L7LMjfvuhsHESwmhQvYpBaWIBJPYBOcX88SZa9G6UTV8Mv5RnLscgxmLfsfFa3FY8P7ALCeC2IQUXL+VCEVRMfrJKJQpGYTdB87iq5W7cO1mAt5/pScAYMyzHfHKB6vQZsA0VCwbgg9f6wW7XcGsJVvx+rBOuHgtFu99tgE3YpPQu2MDDOoZWaDPVV+6JXRBNZytJMmJUBxsJSHyJDq9nuNL7oLBxIvJvqWgxBzSuoxCYXc4u6zqVCuNSS90BQA0a1AZAX5mvD71R/zx9xm0jKia6T4+JgM+f7sfKpYJQbm08SdNwivCaNBh1pKtePaxVqhaIRQVyxTD99OfRorFBl+zEQCw8Mc9KB0aiHZNa+Dx0V+iRcMqGNWqFkb+93tULBuCdk1r5P+TNIXAWOEhyHqftFaSVHBxPCLPI3N8yV3JWhdABUOSZMi+pQAUjUTu5+MMDG2bVs90eatGzjBy7PS1LPcxmwxo0bCKK5Ska9PEeYzjZzK3NqWHkoQkC+Z/vxOjBrfHxauxOHb6Ggb1jESd6mXQoUUYNu88ni/PKSN9qeYwVe4ByCakJieldd0wlBB5Io4vuTsGEy8myQZIpmCtyygUFcs41xWx2TMP9nUoKoDbg1czOnc5Bt+v34+EpMwr4lptzt2SiwX5ZvtYX674AxF1yqNh7fKIiXd2IQUF+AAAAv18cCsu+QGeyR2MQTBWewz6kFpw2G1ISUqA4uBuzkSeSpJkyDK/eu+Gr44XE0JA9rn7jBNvUbVCcZQtGYQN244g4/ZPW/Y413JpVLdClvvcjE3Cu5+tx6adxzJdvmH7Ufj7mlC7Wuks97l2MwHL1v2FFwa2B3A7vNyKTQIA3IhNyjHQ3Ct9yaYwVekFSWe+3UrCra2IPJpOz26c3PAV8mrCOc4k7ljuN/VwkiTh5aei8dqUVRgz5Uc8+lAD/HvhJmYt3oqOLWqidtXSSEqx4vSFmyhfOgTFgnwRUbsCmtWvjKlf/gKL1Y5qFUKxbd+/+GbNPrw6tEO2M3lmLdmKh1rXQrWKznViypUKRtUKoZi+aAuim9fEr7uOY9IL3R7syRgCYKzQGbLRHw67DRYGErpPhw4dxsxPP8U//xyBr68PWjRvgZdeHIlixZwtjEOfHYYDBw5mud+iBV+hTp3a931cu8OBKVOmYuPmzSgWEoJXXn4JrVq2dN3fYrGgT9/H8L/3/ouGDRrk87N2bxz4mjvuLuzlhMMC66mlWpdRaH7fexJzlu3AybPXEeTvg67t6mLkwLYwGvTYe+gcnnnzG7zzYjf07FAfAJCUYsXnS7fjlz+O42ZsEsqXDsGgHk3R56GGWY598ux1DByzED/OHobSJQJdlx87fQ1vTV+Da7cS0LdzBF4Y2O6+Tzq60EbQF68HQMCamgKHnd02dH+OHj2Gp4c9h8imTfD4Y4/hxs0bmDX7M5QrWxZfzZ8HIQTaRXdAr5490alDh0z3rV69Gnx8fO7ruADw3ffLMfeL+Xhj3Os4evQoln73HX5cuQIhISEAgC8XfI3Dhw/j44+mFOyL4IZ8/QMh67gc/d0wmBQB1tOrIGzxWpdBd6P3h7FiZ8jGADjsNlhTU8CPJj2I4SNGwmq1Yv68Oa4xDb/+9hs+mjoN8+Z8DlVV0OvR/+CzWTMRGdk0345brlxZvPLaWJQqWQJjXnsVQgi079AJ777zNtq0boW4uHj06fsfzJvzOapVq5rLo3kZSYJ/YLDWVbg9jjHxckIIyP7ltS6D7kJXvAFM1fpAMvjDkpIMS0oyQwk9kLi4ePz511/4T98+mQZaRkdFYd2a1ShXriyOn3COvwoLC8vX4wJpqyWbTGn/lqDX66GqzoHpX3z5Jdq2bVP0QgkAPceX5AmDSREg+2Ud+EluQO8LY5XeMJSIgOJQkJIYD4fdpnVV5AVOnjoFVVURHByCN96agDbto9G6XRQmTHwbiYmJAIATJ07A19cXn8yYgehOndGidVu8+NJonD137oGOCwD169XDth07cP36dfy25XekpqaiTu3auHTpMlb/tAbDnxtW4K+BO9LpjfylIw8YTLycJEmQfUsCsiH3G1Oh0RWrB1O1vpCMgWmtJEk8YVG+iY2NBQC88+57MJlMmPrhZLz04gvYun07Rr38CoQQOH7iJFJSUhAYEICpH07GW2+Mw/kLF/DMsOG4cePGfR8XAB77T19UrlQJ3Xr0wtv/fRdvjn8dJUqUwOzPPkfvXj0RFBSEiW+/4xwA+/5kpFos2T6et9EbDBz0mgdsVyoCJEmG7FcWamLOvwlRIdGZYajYBTpTMBx2O6yp7Lah/OdIW+umdq2amPDmGwCAyMimCAgIwPg338Ku3Xvw/P8Nx5ODBqJRowgAQAQaon79+uj7WD98u3QZXnxh5H0dt0XzZjCbzfjow8mwWCwwmUyQJAlHjx7DH7t24YcV3+Ozzz7H9evXMfWjD/HB5Cn4fM5cjB71YmG8NJrR6bioWl6xxaQIEEKF7MdxJlrThdSBqfpjkI1BsKSylYQKjq+vHwCgTevWmS5v2aI5AOD48eMIC6vhCiXpypcrhyqVK+PEyVP3fdyMzGaz68t4+sxZGDRwAIKCgrD519/Qu1cvVKlcGY/26Y1ff/3tfp6mR9EZDPy85xGDSREgSTJ0/hxnohnZBEPlHjCUioSqKEhJTIDDxrEkVHAqVnB+3m13vM8caRs+mswm/LRmLQ4ezLqXltVqRUhI8H0fNzs7//gDZ86exRP9Hgfg7BIKCnJOuQ8MDMCtmJi8PC2PpjcY2WKSRwwmRYSkN0MyFde6jCJHDq4JU/XHIZtCYE1NQWpyEoRQtS6LvFyVKpVRtkwZbNy0KdNv6b9v3QYAiGjYEPO+mI9PZs7MdL+jx47hwsWLaNK48X0f906qqmLGzNkY9szT8DE7Fy0MCQnBrVu3AAA3b95yrW/irWSZy9DfC75SRYQQKqcNFybZCGPl7jCUag5VVZGSlAC7zap1VVRESJKEUS++gIOHDmPcG29i9549+HbZMkyd9gk6REehVs2aGPbsMzhw4CAmTHwbu3bvxqoffsRLL7+KsLAa6N7NuUO3zWbDoUOHce3a9Twf905r1/0Mm82Gnj0ecV3WpnUrLP7mW+z84w98s3Qp2rVtUzgvjEZ0Bs7GuRdcYK2IEEJAWGNhO7ta61K8nhxUA4ZSzQFJhs2SykBCmtm6bTu+mP8lTp46hcDAQDzcpTNGDH8ORqNzp+yNmzZj4aLFOHP2LHx8fBDVvh1Gjvg/BAUFAQAuX76MR3r1wbBnnsZzw57N83HTWa1W9O77GF5+aRQ6doh2XR4fH48Jk97B/r//RmTTJpg44S0E+PsXwiuiDR+/AMg6Hbty8ojBpIixnl4JYUvQugzvJBtgrNAJkrkEVEWBJTUZQmW3DVFRJkkS/Lja6z3hdOEiRAgVusCqcNz8W+tSvI4cWBWG0q2crSTWVNitbCUhIkCnN3DTvnvEYFKkSJADqwEMJvlID2PFTpB8SkJVFViTE6CylYSI0ugNxtxvRJkwmBQhkiRBMgZAMhWHsN7SuhyPJwdUhqFMa0DSwWa1wG4tGqtXElHeSJIEnZ4Lq90rBpMixtmdUwWOGwwm90+GoUJHyL5loKoqrMmJrg3KiIjSsbXk/jCYFDGSJEMXVA2OG/u0LsUjyX4VYCjXDpB0sFstsLGVhIhyYDBmv+Ac3R2DSREk6X0g+ZSCSL2mdSkeRIahfDRkv3IQqgpLSiJUha0kRJQ9WaeDrNNpXYZHYjApglyzcxhM8kT2KwdD2faArIfdaoXNmqp1SUTk5gwGE2fj3Ceu/FoESZIMXWBVQGKavzsZhnLRMJTvCAEZqcmJDCVElCd6I/fGuV9sMSmiJJ0BckAlqAmntS7FLcm+ZWAoFwXIBthtVtgsDCRElDd6g4Gh5AEwmBRRQqjQB9eCjcEkC0PZdpADKkMIFZbkJKiKQ+uSiMiD6NmN80AYTIooSZIh+ZaEZAyCsMVrXY5bkHxKwlC+A2SdCTarha0kRHTPuHbJg+MYkyJMCBW64DCty3ALhjJtYKz4MCAZkJqUyFBCRPdFzynCD8yrg0lSUhIaNGiAli1bwm635+ux7XY7FixY8MDHiY6OxsyZMwEAK1euRM1stg0vKM41TcKK9iBYc3EYq/dzru1isyElMR4Ku26I6D4ZjFxU7UF5dTBZu3YtihcvjsTERGzatClfj71mzRq8//77+XrMrl27Yvv27fl6zFzJeucMnSJIX7oVTJW6A7IRqcmJsFpStC6JiDyYTm+ALOvYjfOAvDqYrFixAm3atEHz5s2xdOnSfD22ECJfjwcAZrMZJUqUyPfj5kYXUqfQH1NTphAYqz8OfXANOOw2pCQmQHGwlYSIHozRZC6Q74aixmuDyb///osDBw6gVatWeOihh7B7926cOXPGdX3GLpTsLlMUBVOmTEG7du0QHh6OLl264NtvvwXg7HIZN24cAKBmzZrYvXs3Zs6ciYEDB2L06NFo1KgR/vvf/wIAvv/+ezzyyCOoX78+GjZsiP79++PQoUPZ1nxnV86JEyfw3HPPoWnTpggPD0eHDh3w5Zdf5t+LBOdALdkcAsmn8AORFvSlmsNUuQcgm5CanARragoAnkiI6MHIOh0HveYTrw0my5cvh6+vL9q2bYtOnTrBYDDcU6vJN998g/Xr12PatGnYsGEDBg4ciEmTJmHfvn3o2rUrxo8fDwDYvn07IiIiAAB79+5FaGgofvzxRwwaNAibNm3CO++8g2eeeQY///wzFixYAKvVijfffDPXx09NTcXQoUMRHByMpUuXYs2aNejSpQsmT56Mo0eP3t+LkgMhVOiLhefrMd2OMQjGao9BH1LL2UqSlADFkb/jjoio6GJrSf7xymDicDiwevVqREdHw2w2Izg4GK1bt8YPP/wAq9Wap2OcP38evr6+KF++PMqVK4eBAwfiq6++QpUqVWA2mxEQEAAAKFGiBIwZBju9+OKLqFChAipXrozg4GC899576NmzJ8qVK4eGDRuib9++OHHiRK6Pn5qaisGDB2PChAmoVq0aKleujBdffBEAcPz48ft4VXImSTJk/4qQjEH5elx3oS/ZFKYqvSDpzLdbSXgCIaJ8IskydHouqpZfvHIdk99//x03b95Et27dXJd169YNv/32G37++Wf06tUr12MMGDAAmzdvRrt27VC7dm20atUK3bp1Q/HixXO8T/HixV2BBQCaNm2Kf//9F7Nnz8bp06dx7tw5HD9+HKqq5vr4xYoVQ//+/bFmzRocOXIE58+fx7FjxwAgT/e/dwK6YnXhuLqzAI6tEWMgjOU7Qzb6wW6zOQe3MpAQUT7jLsL5yytbTFauXAkAGDlyJOrUqYM6depg7NixAHDX7hxHhgGQlStXxsaNG/HFF1+gefPm2LJlC3r16oVVq1bleH+z2Zzp/z/99BN69OiBCxcuoFGjRhg7dixef/31PD2HGzduoEePHvj+++9RqlQp9O/f/66P/aCcU4erA3rfAnuMwqQLbQxTld6Q9D6wpCTBmprMUEJE+U+SYDCa2FqSj7yuxeTWrVv4/fff0adPHwwZMiTTdQsWLMCKFStw4sQJGAwGJCUlua5LSkrCrVu3XP9fuHAhihcvjm7duqFVq1YYM2YMhgwZgnXr1qF37955ehPOnTsXffv2xdtvv+267JdffgGAXJcrXrNmDeLi4rBhwwYYDAYAt7twCrIfU1+sDhzX9xXY8Quc3h/Gip0hGwPgsNtgTU1hvy8RFRi2luQ/rwsmq1evhsPhwLPPPouqVTOvzzF8+HCsWrUKS5cuRcOGDbFu3Tp07twZgYGBmDFjBnS62wuNxcTEYPbs2TCbzahVqxZOnz6No0ePYvDgwQAAX19ny8Lhw4dRvXr1bGspU6YM/vrrL/zzzz8ICAjAr7/+isWLFwMAbDYbTKac39ClS5dGamoq1q9fj8aNG+P06dOudVNsNtv9v0B3IUkydMG14Lh5EFAL5jEKkq54Q+hDGwAALCnJcNg97zkQkWcxMpjkO68LJitXrkTLli2zhBIAqFixIjp27IjVq1dj7dq1iIuLw5AhQxAQEIChQ4ciISHBdduRI0fCbrfj3XffxY0bN1CiRAk88cQTeO655wAAzZs3R4MGDdCvXz9MmTIl21reeustTJgwAQMHDoTRaEStWrXw4YcfYvTo0Th06BCaNGmS4/Po0qUL/vnnH3zwwQdISkpCuXLl8J///Ae//PILDh06hCeeeOIBX6kcSDroQmpBuXWwYI5fEPR+aa0kgXDY7bCmJrOVhIgKnN5ghCR75YgITUmCZ3C6g1CssJ76HhDuv+iYrnh96EMbApBgTU1hKwkRFRpf/0BIsszxJfnM61pMKB/IRuiCw6DEHtG6kpzpfWCs0BmyKZitJERU6PQGI2RdEd5nrAAxmFC29KENoMSfAFT3azXRhdSFvmRjABLHkhCRJoxmn1wnMdD9YTChLCRJgpCN0IXUhXLrgNbl3CabYaj4EHTmYnA47LCmpECIgljThYgoZ3qjEZIkMZQUEAYTypYkSdAXrwcl7jigWLQuB3JwLRhKRSJ9LIndlrcVfImI8pvR5KN1CV6NwYRyJsnQF68Px/U92tUgG2Gs2BmSqRhUxQFLagpEgax8S0SUu/TF1NhaUnAYTChHkiQ7pw7HHoGwJ+V+h3wmB9WAoVRzQJJhs6SylYSINCbBaGZrSUHjBGzKlXM6biGSDTBW6gZD6ZZQVYGUpASGEiLSnDFt2xG2lhQstpjQXUmSDDmwGqSYwxDWuAJ/PDmwKgylW7GVhIjcilQAe+IMGjQIe/Zk7io3GAwIDQ1FdHQ0XnvtNfj4PHgLjd1ux5IlS/DUU0898LEKA4MJ5YGAvkRj2C/+UnAPIethLN8Jkk9JqKoCa3JCAe2iTER07wqqC+fhhx/GG2+84fp/SkoKtm/fjvfffx+qqmLSpEkP/Bhr1qzB+++/z2BC3kOSZOj8K0DxKwc1+VK+H18OqAxDmdaApIPNaoHdqv0sICKidLKscy4/XwBdOGazGSVKlMh0WaVKlXD48GGsW7cuX4KJpy0+yTEmlCdCqNCnDUTNPzIMFTrDULYdVCEhNSmRoYSI3I7Jx7fwH9Nkgl7vbDuw2WyYMmUK2rRpg4iICDz22GPYvn2767aKomDKlClo164dwsPD0aVLF3z77bcAnPvHjRs3DgBQs2ZN7N69u9Cfy71iiwnliSTJgMEfumLh+bLBn+xfEYaybQFJB7vVAhsDCRG5Ib3BCJ2+8L4qHQ4Htm/fjh9//BH9+vUDAIwbNw7//vsvPvroI5QqVQq//fYbhg8fjlmzZqF9+/b45ptvsH79ekybNs11/aRJk1CjRg107doViYmJ+N///oft27cjKCio0J7L/WIwoTxzLrrWAGrC6QeYPizDUL4DZL+yEKoKS3IiVFXJ1zqJiPKDJEkw+fgW6NLzP/30EzZs2OD6v8ViQdmyZfH0009j+PDhOHfuHNasWYMffvgBtWvXBgAMGTIEx44dw/z589G+fXucP38evr6+KF++PEqWLImBAweiatWqqFKlCsxmMwICAgAgS5eRu2IwoXsjSdCXjIT90q/3fFfZrzwMZdsBsp6tJETk9tIHvBbk9ODo6Gi8+uqrEELg4MGDeO+999CyZUsMHz4cer0eR444N1Pt379/pvvZ7XYEBgYCAAYMGIDNmzejXbt2qF27Nlq1aoVu3bqhePHiBVZ3QWIwoXsiSTJ0ARXvcSCsDEO5KMj+5W+3kihsJSEi96XT6WEwmgr8cfz8/FCpUiUAQOXKlVGyZEkMGTIEOp0OkyZNcg1cXbJkCfz8/DLdV5Zl1/02btyIPXv2YMeOHdiyZQvmzZuH999/H7179y7w55DfOPiV7plzIGwLQMp9y2/ZtwxMNZ6A7F8edpsVKUkJDCVE5PbSu3AKW/PmzTFkyBB8++232Lp1K2rUqAEAuHHjBipVquT6s3LlSqxcuRIAsHDhQmzcuBGtWrXCmDFj8NNPP6FFixZYt24dAM9bEI7BhO6ZJMmQDH7QFQu/6+0MZdvDUOEhCElGanIibJbUQqqQiOj+GUxmSLKs2Rf6qFGjULlyZUyaNAlly5ZFVFQUJk6ciF9//RUXLlzAvHnzMGfOHFSsWBEAEBMTg3feeQe//PILLl26hG3btuHo0aOIiIgAAPj6OmcVHT58GBaL+3ehS8LTJjiT2xBCge3MaghbfKbLJZ9SMJbvAElnhM1qYSAhIo8hyTJ8/QMLJZQMGjQI5cqVwwcffJDluj179mDw4MEYOHAgXnnlFUybNg3r1q1DfHw8KlasiKFDh+LRRx8F4JzJk379jRs3UKJECfTq1QsjR46ETqdDfHw8nn32WRw5cgRTpkzBww8/XODP7UEwmNB9E0KFsNyC7dw6AM63kaFMW8iBVSCECmtKChTFoW2RRET3wOzrD51e73HdH96Eg1/pvkmSDJhDoQupDSX1OozlO0HWm2C3WmG1pGhdHhHRPdEbDNAbDFqXUeSxxYQemFAVQJIhhIA1NRmKg60kRORZJEmCb0AgAImtJRpjiwk9OEkCIJCSlAAw5xKRBzL5+IGhxD1wVg49MEmSAUiFMuefiCi/GYwm6A0GhhI3wWBC+UKSJBhNZshy7mubEBG5C1nWuVZ4JffAYEL5yuzrl/uNiIjcBM9Z7ofBhPKNJEmQZJm/fRCRRzCafTRdSI2yx2BC+Sq9S0en55Q7InJfOr0BRpOZocQNMZhQvhNCwOzrlzYolojIvUiSBLNGe+FQ7vjNQfku/TcQsx/7bonI/Zh8/ACJU4PdFYMJFQhJkiDLOph8fLUuhYjIhVOD3R+DCRUYSZLSTgJGrUshIoJOp+fgfA/AYEIFSggBk48v1zchIk1JkszuZQ/BYEIFKvN4EzadEpE2fPz8wSXnPQODCRU4SZKcv634crwJERU+s68f1yvxIAwmVCgkSYLeYITBZNa6FCIqQgwmM/QGI0OJB2EwoULFxdeIqLDo9AaYONjV4zCYUKEz+/pB1nEwLBEVHFmWYfb14yJqHojBhApVenOqj68/V4YlooIhSTD7+af9k104nobfDFToJEkCJMk5Sp4nDSLKZ2Yf55YYDCWeicGENJG+E7GPr7/WpRCRFzH5+EKn1zOUeDAGE9KMJEmQdTqYfbnoERE9OKPZhzNwvACDCWlKkiTn9uMcOU9ED8BoMsNoMjOUeAEGE9KcJEkwmswwGE1al0JEHshgNPGXGy/CYEJuw9k3zDVOiCjv9AYjdzH3Mgwm5DaEEDD7+kGn12tdChF5AJ1eD5OPL9cq8TIMJuQ2XBv++foznBDRXck6Pcy+XKvEGzGYkFthOCGi3MiyLm23YIYSb8RgQm6H4YSIciLLMkOJl2MwIbeUOZxwQCwRAbJOBx//AECSGEq8GIMJua3b4cSP4YSoiJN1Ovj4BQBgKPF2DCbk1hhOiEin16eFEnbfFAUMJuT2GE6Iii6d3sDZN0UMgwl5BIYToqJHbzC49tJiKCk6JMGVaciDpL9dbZZU2G1WjashooKScUVXhpKihcGEPJbNaoHNkqp1GUSUzwxGk2tFV4aSoofBhDyWEAKKww5LSrLWpRBRPjGazNyQr4hjMCGPJoSAqihITUkC+FYm8mgmHz8YjEatyyCNMZiQxxNCQKgqUlOSIFRV63KI6B5JkgSznz9kWceuG2IwIe8ghACEQGpKElRF0bocIsojWdbB7OcPiau5UhoGE/Ia6W9lS0oyFIdd42qIKDfONUo4HZgyYzAhr8LpxESewWAyw2T24cwbyoLBhLyWw26DJSUFAN/iRO7E5OMLg9GkdRnkphhMyGsJISCECktyMlSV406ItCZJEsy+/pB1HORKOWMwIa+W/va2pqbAYbdpXA1R0aXT6WHy9eMgV8oVgwl5vfQ+bLvNCmtqitblEBU5RpMZBpMZAAe5Uu4YTKjIEEJAVRVYkpMhBNc7ISpo7Lqh+8FgQkUKpxQTFQ5OBab7xWBCRU561w43ASQqGCazDwwmM6cC031hMKEiK30pe0tqMleLJcoHkizDx9cfkiwzkNB9YzChIi397W+3WmCzWjSuhshz6Q1GmHx8AbDrhh4MgwkRMrSepHDNE6J7IUkSTD6+0BuM7LqhfMFgQpTGtZy91QI7W0+IcsVWEioIDCZEd0ifVmxNSWHrCVE2JEmGydcXer2BrSSU7xhMiLLB1hOi7BmMJhjNPgDYSkIFg8GE6C7Sx55YU1OgKA6tyyHSjKzTweTjC1nmYmlUsBhMiHJxe0l7G2yWVK4aS0WO0ezj2g2YoYQKGoMJUR5xajEVNXqDESazD8CN96gQMZgQ3SMhBIQQsFlS4LBzWXvyPjqdHkYfH+h0eg5upULHYEJ0H9JP1orDDmtqKmfvkFeQZR2MZh/oDZxtQ9phMCF6AOkfH4fNCqvVAvDjRB5IkqS0QGJ0/Z9IKwwmRPmA04vJUxlNZhhMZgAMJOQeGEyI8pHz4yRgs1hgt1m1LocoRwajCUaTmQNbye0wmBAVACEEIISzBYUBhdyI3mCE0WSGJMsA2EpC7ofBhKiAuD5aDCjkBgxGEwwmsyuIMJCQu2IwISpgtz9iAjarFXarFQA/dlTwJElyBZKMlxG5MwYTokLkWqTN5gwoXEWWCoIkyTCaTNBztVbyQAwmRBpI/9gpDjvsNisUB/fhoQcnyzoYTGboDQYADCTkmRhMiDSUvoiVqijOVhSOQ6H7oDcYoDeaoNdzYTTyfAwmRG4g48fQYbPBbrNAVdnNQzmTZNk5fsRohCTJDCTkNRhMiNxMxuXubVYrFAf346Hb9AYjDEYTdHruY0PeicGEyE2lf+kIocJhs8Nut0FVOBalKJJ1OhgMJuiNRtdlDCTkrRhMiDyAayyKqsJht8Fht0FVuHGgN5MkCXqDEXqjCTqdjq0jVGQwmBB5mIwDZh12G+x2GwTHo3gFSZadYcRggE6nd409YiChooTBhMhDZfzSUhQFDrsVDrudIcXDyLLOOavGYISc1jICMIxQ0cVgQuQFMn6ZqaoCh90OxeHgwFk3Jev0t8OILDOMEGXAYELkhW4PnBVQFQccDgcUux2qynEpWpBkGTq9s3tGb9Bzei/RXTCYEHm5jL+NC6HCYXe2pCgOO/jxLxiZgoheD4mtIkR5xmBCVMRk/E1dVVUoDgdUxQFFUTgd+T4xiBDlHwYToiIuc4uKgFBVKBmCCqclZybrdJBlHWSdDjqdDrJO73rtAAYRogfFYEJEWdwZVlRVgepQnH+rKkTa395MkiTIOr0riOj0OkiSnCmEpN+OiPIPgwkR5Ul2LQKqqkJVFQhVhap4VmiRJAmSLEOSZMiyDEnO+LfO9TzZEkJUuBhMiOiBZfflLYQKoQpn95BQ0/52dhW5/p3hcjzgqUiSJECSnIEDGf6d/idj+Ehr+biz/jufAxEVPgYTIipwd55m8vLln/OpSQACQNoxcjsWQweRZ2EwISIiIrcha10AERERUToGEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG7j/wGMRUYf+3wkewAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import numpy as np\n", "\n", "# Apply seaborn style\n", "sns.set(style=\"white\")\n", "\n", "# Generate a custom color palette with a gradient effect\n", "# Let's create a gradient from light to darker orange\n", "palette = sns.light_palette(\"orange\", n_colors=len(top_countries_series), reverse=True)\n", "\n", "# Create the pie chart with matplotlib, using the custom seaborn color palette\n", "plt.figure(figsize=(10, 6))\n", "plt.pie(top_countries_series, labels=top_countries_series.index, autopct='%1.1f%%',\n", " startangle=90, colors=palette)\n", "\n", "plt.title(\"Distribution of 'Moderate' Cases Among Top 5 Countries and Rest\")\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAALACAYAAABb8+17AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGqklEQVR4nOzdeXhM5///8dckRBIiatdUxdYQEomdWKMVtVOtLfEh1L7rErUUtVNF7FvVUnssRS2ltNXWUmpfaq2G2kpsIWHm94ef+YoEB2Fm4vm4rlyfOefc5z7vM3fic82r577HZLFYLAIAAAAAAMBjOdm6AAAAAAAAAEdAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAJDOLxWLrEiD7GAd7qAEAkHwIUQAASKEiIiLk4+Pz2J+wsLCXVk/nzp0VERGRaP+dO3c0evRoVaxYUUWKFFGTJk20e/fux/b1zz//PPHe5s2b96Ju5ZGuXr2qTz75RDt27Hhsu6Tq9fX1ValSpRQeHq49e/a8kPrCwsJe6pg/TmRkZKL3wN/fXyEhIRo2bJiuXLmSoH1ERISCg4MN9//XX3+pcePGT2wXFRUlHx8f/fPPP890nceZMGGCpk+fbt2+f88AAMeVytYFAACAF6N9+/Zq1KiRdXvChAk6cOCAxo0bZ92XLl26F16H2WzWkCFDtHbtWtWrVy/R8aFDh2rx4sXq0aOHvLy89PXXX6t58+ZatmyZcuXK9di+27Vrp0qVKiV5LGfOnMlR/lM5ePCgli9frvfee++JbRs0aKD333/fuh0XF6e//vpLkyZNUosWLbRmzRplyZIlWev7/PPPk7W/5LBgwQJJ957YuHnzpvbu3aupU6dq48aNmjdvnjJmzCjp3u9zs2bNDPe7Zs0a7dq164ntKlWqpAULFihr1qzPdgOPMWbMGHXs2NG6/f7776t8+fLJfh0AwMtDiAIAQAr15ptv6s0337RuZ8yYUS4uLgoICHhpNRw6dEgDBw7U3r175erqmuj42bNnNW/ePPXq1UtNmjSRJJUrV04hISGaOnWqBg4c+Nj+33zzzZd6P8kpe/bsiWovWbKkcubMqQ8//FDr1q1T06ZNk/Wa+fLlS9b+ksPD70FQUJDKli2rJk2aaNSoUdbfgQd/l5NTxowZrUHNi5Y9e3Zlz579pVwLAPBiMJ0HAIBX3JYtW9SkSRMVK1ZMpUqVUo8ePXT27Fnr8fvTHXbv3q169erJ399ftWrV0po1a57Y96effqq7d+9qwYIFypQpU6Ljv/32m+7cuaN33nnHus/FxUWVKlXS5s2bn/vebt++rWLFimnYsGEJ9t+5c0elS5dOENIsWrRINWrUUOHChVWpUiVFRkbq7t271uMRERFq3ry5lixZopCQEBUuXFh16tTRTz/9JEnaunWr9UmJZs2aPfO0mfTp00uSTCaTdd+VK1fUt29flS1bVn5+fvrggw/022+/JTjv+vXr6tu3r8qUKaPAwEB169ZNM2fOTDB95OHpPLdv39b48eNVrVo1+fn5qWrVqpoyZYrMZnOCc3r16qUpU6aoUqVK8vPzU6NGjRJMObp165b69eunChUqqHDhwqpWrVqCaSxPy9/fX1WrVtWyZcsUGxsrKfE0m3379ul///ufihUrpsDAQDVv3lx//vmnpHvTZu4/ceXj46PIyEjr63Hjxql+/fry9/fXuHHjEk3nuW/BggWqVKmS/P399b///U8HDhywHnvUtJyHryVJ48aNs75O6rzVq1erfv36CgwMVFBQkPr27auYmJgE13rnnXe0adMm1apVS4ULF1ZISIiWLVv21O8rAOD5EaIAAPAKW7ZsmcLDw5UjRw6NGjVKPXv21K5du9SwYUNdunQpQds2bdqoSpUqGjdunHLnzq2uXbs+MegYPny45s2bpwIFCiR5/NixY0qbNm2iaSu5cuXS+fPndePGjcf2bzabdefOnUQ/98OPNGnSKCQkRN9//32CBT63bNmiy5cvq06dOpKkyZMnq0+fPipTpowmTZqkpk2baurUqerTp0+C6+3bt0/Tp09X586dNX78eDk7O6tTp06KiYlRoUKF1LdvX0lS3759nzh15uHab9y4oZ07d6p///7y8PBQlSpVJN0LOv73v/9pw4YN6tatm8aNG6fs2bOrVatWCYKU9u3b6/vvv1enTp301Vdf6caNG/ryyy8feX2LxaK2bdtq2rRpev/99zVp0iRVq1ZNo0ePTlT72rVrtWHDBvXu3VujRo3SxYsX1alTJ+v7PHjwYP3000/69NNPNX36dFWpUkXDhw/XkiVLHvsePE5QUJDi4+O1d+/eRMeuX7+uVq1a6bXXXlNkZKS++uorxcbGqmXLlrp27Zref/99NWjQQNK9MOTBaVOTJk1SrVq1NHbsWIWEhCR57X///Vfjxo1T165dNWrUKMXExCgsLExnzpwxXP/9aUoNGjSwvn7YhAkT1L17dwUEBGjs2LHq0KGD1q5dq7CwMN26dcva7sKFCxowYICaNWumKVOm6I033tCnn36qY8eOGa4HAJA8mM4DAMArymw2a+TIkSpXrlyCD9tFixZV9erVNX36dH3yySfW/WFhYerQoYMkqXz58qpXr57Gjx+vihUrPvIaT1pE89q1a0muy5I2bVpJ9z4s33+dlF69eqlXr16J9ru7u1vXw6hTp46WLFmiP/74Q8WLF5ckrVq1Snny5JGfn5+uXbumCRMmqGHDhurdu7eke1OKMmTIoN69e6tFixbKnz+/td6oqCjr1BJ3d3eFhobq999/V0hIiHW6TL58+Z44dWbChAmaMGFCgn0uLi4qXry4Bg8erGzZskmSli9frkOHDmnhwoUqUqSIJKlChQoKCwvTyJEjtWTJEv3222/aunWrIiMjVbVqVWubmjVrPvKD9k8//aRff/1Vo0aNUo0aNSTdCy5cXV01ZswYNWvWzHrfd+7c0fTp061jdePGDX366ac6ePCgChcurG3btikoKMjaT6lSpeTu7p7k00dGZc6cWZJ08eLFRMeOHj2qy5cvq1mzZipatKgkKU+ePFqwYIFu3LiRYNrMw9OFihcvrhYtWli3kwpp7t69q/Hjx8vf31+SVKRIEb399tuaPXu2Pv30U0P1379uUtO2JCkmJkYTJ07UBx98YA3fJOmtt95S06ZNtWTJEut0rtjYWA0aNEhlypSRJHl7e6ty5cravHmz8ubNa6geAEDyIEQBAOAVdeLECV24cEE9evRIsP/NN99UYGCgtm3blmD/g4vCmkwmvfPOO4qMjNStW7eSXO/EiCd9/auT0+Mfmu3YsWOSC8s6OztbX5csWVKvv/66Vq1apeLFi+v27dv64Ycf1Lp1a0nSrl27dOvWLQUHB+vOnTvW8+5PHdmyZYs1TMiYMWOCtTnuf1C/P+XkaXzwwQf64IMPZLFYdOjQIY0YMULFihXTl19+mSA4+u2335QlSxYVKlQoQX2VK1fW8OHDFRMTo99//12pU6fW22+/bT3u5OSk6tWrW6eXPGzbtm1KlSqVqlWrlmB/7dq1NWbMGG3bts163/ny5UsQdt0PeO7fd6lSpTR//nz9+++/qlixoipWrGgN3F6E/PnzK2PGjGrbtq2qVaum8uXLKygoSB9//PETzy1YsOAT2+TMmdMaoEhSlixZFBAQoO3btz9X3Q/6888/FRcXp5o1aybYX7x4cXl5eWnbtm0J1sR5MIi5/3t38+bNZKsHAGAMIQoAAK+o+18he/+/+D8oc+bMCdaAkJTo20syZcoki8Wiq1evPnOIki5duiSn7Fy/fl2S5OHh8djzvby85Ofn99g2JpNJtWrV0qJFi9S7d2/9+OOPunnzpmrVqiXp/96H+6HKw86fP2997ebmlqhvSQnWEDEqa9as1tr9/f2VM2dOtWjRQl27dtWUKVOsfV+5ckUXLlxQoUKFkuznwoULunz5sjJkyJAodHrckyAxMTF67bXXEgROkqxTq65du2bd9/B937/O/fvu1auXsmfPrhUrVuiLL77QF198ocDAQPXr1++RU7me5N9//5WkJBdiTZs2rebOnauJEyfq+++/14IFC+Tq6qo6deqod+/ecnFxeWS/7u7uT7x2Un8TmTJlSrBW0PO6v+7Jo/7+Hnz/pYRjcP/9f1IICQBIfoQoAAC8ojJkyCAp6ekSFy5c0GuvvZZg35UrVxJ84Lt48aKcnZ2t/TyLPHny6Pr16/rvv/8SfEPKqVOn5OXl9czhzMPq1KmjyZMna+vWrVq9erVKlCghLy8vSf+3kOvIkSPl7e2d6NykPuS+CGXKlFGTJk00d+5cLVy4UA0bNpR0L0jy9vbWyJEjkzzvjTfeULZs2XT58mWZzeYEQcrD69o8yNPTU5cvX9bdu3cTBCn3Q6OHx/9xXFxc1K5dO7Vr105nzpzRjz/+qAkTJqhHjx5atWqV4X4e9Ouvv8rd3f2R4VGePHk0YsQI3b17V3v27NHy5cs1b948vfnmm2rVqtUzXfO+Bxd2ve/ChQvW39H7AdeD792T1u95mKenp6R7f0d58uRJdC1bfEU3AODJWFgWAIBXVO7cuZUlSxatXLkywf7Tp0/rzz//tK41cd8PP/xgfW2xWLRu3ToVK1bssf/V/0nKli0rSQm+6ScuLk6bNm1SUFDQM/f7sLx586pQoUJatWqVNm/erNq1a1uPFSlSRKlTp9a5c+fk5+dn/UmVKpVGjRqV6FtbHufhpzqeVrdu3ZQ5c2aNGjXK+oRMyZIldfbsWWXKlClBfVu2bNG0adPk7OyskiVL6s6dO9q4caO1L4vFkmDMHnb/nIe/ZWnFihWSpGLFihmq+datWwoJCdGMGTMkSa+//rqaNm2qGjVqPNVCrA86ePCgNmzYoPfee09p0qRJdHzNmjUqXbq0Lly4IGdnZ+tTL+nTp7de80lTwR7nxIkT+vvvv63bZ8+e1a5du1SqVClJsk5tuv+0jCT98ccfifp5XA1FihSRi4tLor+/HTt26MyZM4n+/gAA9oEnUQAAeEU5OTmpe/fu6tmzp3r06KHatWvr8uXLGjdunDw9PRMsvind+6ad27dvK3fu3Fq0aJGOHTumb7755rlq8PLyUr169TRkyBDdvn1b3t7e+vrrr3X16lVDTxP8/fff1q+1fZinp6dy585t3a5Tp46GDRuWaB2Q1157Ta1atdKYMWN0/fp1lSpVSufOndOYMWNkMpmeajrK/elHmzZtkqen51NPZfHw8FC3bt3Uq1cvjRkzRp9//rnq16+vOXPmqEWLFmrbtq1y5MihX3/9VVOnTlVoaKhSp06tEiVKKCgoSL169dLFixf1+uuva/HixTp8+HCCr0p+UIUKFVSqVCn17t1b586dU4ECBbRt2zZNnTpV9erVe+LCuPe5urqqUKFCGjdunFKnTi0fHx+dOHFCS5cufeS33zzo/vhZLBbduHFDe/fu1cyZM+Xt7a0uXbokeU7RokVlNpvVoUMHtW7dWmnTptX333+va9euWRfWvf+E0cqVK1WkSJGnerIjTZo0ateunbp166a7d+9qzJgxypAhg/73v/9JkipWrKghQ4aob9++atmypc6ePavx48cnWgQ5ffr02rlzp7Zv325d1Pi+DBkyqHXr1ho/frxSp06typUr659//tGYMWOUL1++BGsQAQDsByEKAACvsPr16ytt2rSaPHmyOnTooHTp0ql8+fLq3r17oq8d7tevnyZPnqzTp0/L19dXM2bMSPTB8FkMGDBA6dOn19SpU3Xz5k0VKlRIX3/9tXLlyvXEcydOnKiJEycmeaxKlSoJvv2mZs2aGj58uCpXrpxorZWuXbsqS5Ys+vbbbzVt2jR5enqqTJky6t69+xPXZXlQ/vz5VbNmTc2dO1c///xzoqcMjHjvvfe0YMECLViwQA0bNlSBAgU0d+5cffnllxoxYoSuXbsmLy8v9ejRQ+Hh4dbzvvrqKw0dOlRffvml7ty5oypVqqhx48ZatmxZktcxmUyaPHmyxo4dq5kzZ+q///7TG2+8oe7duycK0J5kwIABGj16tGbMmKELFy4oU6ZMatCgwSNDkAfdn7Yk3QtkcubMqcaNG6tVq1ZJfnOTdG89mWnTpmnMmDHq1auXYmNjlT9/fkVGRqp06dKSpKpVq2r58uWKiIhQgwYN1K9fP8P34+vrq5CQEPXr10/Xrl1TmTJl9Nlnn1mn8+TOnVvDhg3TxIkT1bp1a+XNm9e6FsyD2rZtqwkTJujDDz/U6tWrE12nU6dOypw5s+bMmaMFCxYoQ4YMqlatmrp27Wpo7RYAwMtnsrAiFQAAeIyoqCj17NlTGzZs0BtvvGHrcpCE6Oho/fnnn6pSpUqCdWQ6d+6s06dPa+nSpTasDgCAlIMnUQAAAByck5OTIiIiVKVKFTVo0EDOzs76+eeftW7dOg0ZMsTW5QEAkGIQogAAADi4HDlyaOrUqRo/fry6du2qO3fuKG/evBo5cqRq1qxp6/IAAEgxmM4DAAAAAABgAF9xDAAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAawsCzsyq5du2SxWJQ6dWpblwIAAAAAeAXEx8fLZDIpMDDwiW15EgV2xWKxWH9g/ywWi+Li4hgvB8F4ORbGy7EwXo6F8XIsjJdjYbwcC+N1z9N8BuVJFNiV1KlTKy4uTvny5ZO7u7uty8ET3Lx5UwcPHmS8HATj5VgYL8fCeDkWxsuxMF6OhfFyLIzXPXv37jXclidRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFNglk8lk6xJggMlkkpubG+PlIBgvx8J4ORbGy7EwXo6F8XIsjJdjYbyensnyqi/DC7tyf0EfPz8/G1cCAAAAAHhWZrNFTk6OEc48zedQvp0Hdmn8vC2KPh9j6zIAAAAAAE/JK6unOjQOsnUZLwQhCuxS9PkYnYy+bOsyAAAAAACwYk0UAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUVKQO3fu6JtvvlH9+vUVGBio0qVLKzw8XL///ru1jY+Pj6Kioh7ZR2RkpIKDg19GuQAAAAAAOBRClBTi9u3batasmWbOnKmwsDAtXbpUM2fOVN68edWiRQt99913hvoJDw/X4sWLX3C1AAAAAAA4nlS2LgDJY8yYMTp8+LBWrlypHDlyWPf36tVL169f18CBAw09YZI2bVqlTZv2RZYKAAAAAIBD4kmUFCA+Pl5LlixR/fr1EwQo93Xt2lVTp06Vq6urJOnEiRNq3ry5/Pz8VL58eU2ePNna9sHpPP/88498fHy0du1avf/++ypcuLCCg4O1YMECa/u4uDgNGzZMwcHBKly4sEqWLKkuXbrov//+e8F3DQAAAADAy0WIkgKcPn1aV65cUdGiRZM8ni1bNvn7+8vZ2VmSNGfOHNWtW1erV69W48aNNWrUKP3222+P7H/IkCFq27atvv/+e1WqVEn9+vXT6dOnJUnDhw/XunXrNHToUK1du1ZDhw7V77//rokTJyb/jQIAAAAAYEOEKClATEyMJMnT09NQ+yZNmqhu3brKmTOn2rdvLw8PD+3bt++R7Zs3b64qVaooZ86c6tatm8xms3bv3i1J8vPz07Bhw1SyZEl5eXkpODhYZcuW1ZEjR57/xgAAAAAAsCOsiZICZMyYUZJ05coVQ+29vb0TbKdPn163b99+ZPu8efNaX3t4eEi6N4VIkurUqaNff/1VI0eO1MmTJ3X8+HGdOHFCxYsXf4o7AAAAAADA/vEkSgqQM2dOZc6cWTt37kzy+LFjxxQeHq6//vpLkqzTeh5ksVge2b+Li8sj2/ft21fdunVTfHy8goOD9eWXX6pGjRrPchsAAAAAANg1nkRJAZycnNSgQQPNnj1bLVu2TLS47LRp07R37155eXkl63UvX76sBQsW6KuvvlL16tWt+48fPy53d/dkvRYAAAAAALZGiJJCtG3bVj///LOaNGmiLl26qGjRorpy5YrmzZunZcuW6auvvkr2YCNdunTy8PDQhg0bVKhQId26dUtz5szR/v37VaRIkWS9FgAAAAAAtkaIkkK4ublpzpw5mjFjhqZOnaozZ87I1dVVvr6+mj179gtZoyR16tQaM2aMhg4dqlq1asnT01OlSpVS9+7dNXnyZMXGxsrNzS3ZrwsAAAAAgC2YLI9bDAN4yfbu3StJmrfxtE5GX7ZxNQAAAACAp+Xt9ZoGd6n+5IZ24v7nUD8/vye2ZWFZAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAANS2boAICleWT1tXQIAAAAA4Bmk5M9zhCiwSx0aB9m6BAAAAADAMzKbLXJyMtm6jGTHdB7Ynbi4OMXGxtq6DBgQGxurAwcOMF4OgvFyLIyXY2G8HAvj5VgYL8fCeDmWFzleKTFAkQhRYKcsFoutS4ABFotFsbGxjJeDYLwcC+PlWBgvx8J4ORbGy7EwXo6F8Xp6hCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKLBLJpPJ1iXAAJPJJDc3N8bLQTBejoXxciyMl2NhvBwL4+VYGC+kdCaLxWKxdRHAfXv37pUk+fn52bgSAAAAAPbGbLbIyYmAJrncvHlTBw8eVMGCBeXu7m7rcmzmaT6HpnrRxQDPYvy8LYo+H2PrMgAAAADYCa+snurQOMjWZeAVR4gCuxR9PkYnoy/bugwAAAAAAKxYEwUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAw4JUNUcLCwhQREZHksYiICIWFhRnuKzIyUsHBwdbtv/76S5s2bXqu+h7uMyl79uxRmzZtVLJkSfn5+SkkJERffvmlrl+/bm0THx+vmTNnPtW1z5w5o1WrVj1L2QAAAAAApFivbIiSnMLDw7V48WLrdps2bbR3794Xes2//vpLYWFhypcvn2bPnq3Vq1erR48eWrlypdq3b29tt3LlSg0ZMuSp+v7000/1888/J3fJAAAAAAA4tFS2LiAlSJs2rdKmTftSrxkVFaVcuXLp448/tu7LmTOnXF1d9eGHH+rQoUMqUKCALBbLS60LAAAAAICUiidRDPDx8dHixYvVvHlz+fv7q1y5cho3bpz1+INTb4KDgxUdHa1x48ZZpwRdu3ZNffr0UenSpVWsWDE1a9Ys0ZMqCxYs0DvvvCN/f3+1bdtWMTExj63JZDIpOjpaR48eTbC/bNmyWrVqlXLnzq2oqCj17NnTeg9bt26V2WzW5MmTFRISosKFC6to0aJq1aqV/v77b0n3pjlt27ZNS5cutd5TXFycRowYofLlyyswMFAffPCBfvnlF+s17969qxEjRqhixYoqXLiwqlWrpnnz5j3LWw0AAAAAgN0iRDFo2LBhqlevnlatWqXQ0FBFRkZq+/btidotXrxY2bNnV3h4uCIjI2WxWPThhx/q9OnTmjx5shYuXKiAgAA1btxYBw4ckHRvys2AAQPUvHlzLV++XEWLFtXcuXMfW0/Dhg2VKlUq1axZU40aNdKoUaP0888/6+7du8qXL5/SpEmj6tWr67PPPpMk/fLLLwoMDNSsWbM0ffp0RUREaO3atRo/frxOnjypoUOHSroXCAUGBurdd9+1TlHq2bOntmzZopEjR2rp0qV699131bZtW+u6L99++63WrFmjr776SmvXrlVoaKj69eunHTt2JNfbDwAAAACAzRGiGFS3bl3VqVNHOXPmVNu2bZU+fXrt3LkzUbuMGTPK2dlZ7u7uypAhg37//Xf9+eefGj16tIoUKaK8efOqe/fuCggI0KxZsyRJs2fPVvXq1dW0aVPlzp1brVu3VuXKlR9bT65cubRs2TKFhYXp/Pnzmjx5slq1aqVy5cpp4cKFkiRXV1d5eHhIkrJkySIXFxe9+eabGjZsmCpXriwvLy+VKVNG1apV05EjRyRJGTJkUOrUqeXq6qqMGTPq1KlT1nVVSpUqJW9vb7Vo0UI1atTQ9OnTJUl///233N3d9cYbb8jLy0uhoaH6+uuvlTt37mR7/wEAAAAAsLVXdk2UVKlSyWw2J3nMbDYrVaqEb03evHkTbHt4eCg+Pv6J19m/f78sFkuiUCQuLk63b9+WJB05ckQ1atRIcDwwMFCHDh16bN85cuRQr1691KtXL50+fVq//vqrvv32W/Xp00fZsmVTxYoVE50THBys3bt3a8yYMTpx4oROnDiho0ePKlu2bEle4/7TMk2aNEmwPz4+XunTp5ckNW3aVD/88IMqVqyoggULKigoSDVq1FCmTJkeWz8AAAAAAI7klQ1R0qdPr6tXryZ5LCYmRp6engn2ubi4JGpnZNFWs9msdOnSKSoqKtGxB/t8ONBJnTr1Y/sdPny4ypcvrzJlyki6t6hsw4YNVa9ePb3zzjvavHlzkiHKlClTNH78eNWrV09lypRR8+bNtWHDhkd+pfH9e5w7d26ixXOdnO49yOTt7a1169Zp27Zt2rJlizZt2qSpU6dqyJAhqlev3mPvAwAAAAAAR/HKTucpVKiQ9u3bp7i4uAT74+LitGfPHvn5+SXLdd566y1dv35d8fHxypUrl/Vn6tSp2rBhgySpYMGCiaYGPekrkn/77TfNmDEj0X4XFxe5urpanwIxmUwJjk+aNEkdOnRQv3791LBhQwUEBOjkyZOPDITy588vSbpw4UKC+qOioqzB0KxZs7Ru3ToFBQXpk08+0XfffacyZcpo9erVBt4hAAAAAAAcwysbojRo0EBms1kdO3bUrl27FB0drW3btql9+/ZKlSqVGjRo8Mx9p02bVidPntTFixdVvnx5FSxYUN26ddPvv/+uU6dOaciQIYqKirJOEWrdurXWr1+vadOm6eTJk5o9e7bWrl372Gt069ZNv/76q7p06aLt27db6//kk09048YNNWzYUJLk7u4uSdq3b59u3bqlHDlyaMuWLTp69KiOHz+ur776SuvWrUsQJqVNm1bR0dH6999/lT9/flWuXFmff/65Nm7cqNOnT2vq1KmaPHmy3nzzTUnSf//9pwEDBmjDhg2Kjo7Wzz//rIMHDyowMPCZ30MAAAAAAOzNKxuiZMyYUQsWLFD69OnVqVMnhYSEqHv37sqcObMWLlyYaDrP0wgLC9OmTZsUHh4uZ2dnzZgxQ4ULF1bXrl1Vu3Ztbd++XePGjbNOxalUqZK+/PJLLVmyRLVq1dK6desUHh7+2GtUqFBBs2fPVlxcnLp06aKQkBB169ZNJpNJ8+fPV+bMmSVJpUuXVpEiRdSoUSP9+OOPGj58uG7duqX33ntPoaGhOnLkiPr3769Lly7pzJkzkqRGjRrpyJEjql27tu7evauvvvpKVatWVd++fVW9enUtW7ZMgwYNsk7V6dixoxo0aKCBAwcqJCREffv2VePGjdWmTZtnfg8BAAAAALA3JouRhT2Al+T+NKZ5G0/rZPRlG1cDAAAAwF54e72mwV2q27qMFOXmzZs6ePCgChYsaJ3F8Cq6/znUyLIer+yTKAAAAAAAAE+DEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwIJWtCwCS4pXV09YlAAAAALAjfEaAPSBEgV3q0DjI1iUAAAAAsDNms0VOTiZbl4FXGNN5YHfi4uIUGxtr6zJgQGxsrA4cOMB4OQjGy7EwXo6F8XIsjJdjYbwcy4seLwIU2BohCuySxWKxdQkwwGKxKDY2lvFyEIyXY2G8HAvj5VgYL8fCeDkWxgspHSEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCiwSyaTydYlwACTySQ3NzfGy0EwXo6F8QIAALA/qWxdAPAwFxcXubm52boMGODm5iZfX19blwGDGC/Hwni9GGazRU5OBFMAAODZEKLALo2ft0XR52NsXQYAIAXxyuqpDo2DbF0GAABwYIQosEvR52N0MvqyrcsAAAAAAMCKNVEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhR7MD169dVpEgRlS1bVvHx8cnad3x8vGbOnPnc/QQHBysyMlKSFBUVJR8fn+fuEwAAAAAAR0KIYgdWrVqlTJky6dq1a1q/fn2y9r1y5UoNGTIkWfusXr26fvnll2TtEwAAAAAAe0eIYgeWLFmi8uXLq3Tp0po/f36y9m2xWJK1P0lydXVVlixZkr1fAAAAAADsGSGKjR07dky7d+9WUFCQqlatqq1bt+rEiRPW4w9Oo0lq3927dzVixAhVrFhRhQsXVrVq1TRv3jxJ96bd9OzZU5Lk4+OjrVu3KjIyUqGhoerWrZuKFi2qL774QpK0aNEi1apVS/7+/goICFCTJk20d+/eJGt+eDrPkSNH1KZNG5UoUUKFCxdWlSpVNGPGjOR7kwAAAAAAsAOEKDa2ePFiubu7q0KFCnrnnXeUOnXqp3oa5dtvv9WaNWv01Vdfae3atQoNDVW/fv20Y8cOVa9eXZ999pkk6ZdfflFgYKAkafv27cqcObOWL1+usLAwrV+/XgMGDFCrVq30/fffa+bMmbp9+7Z69+79xOvHxsYqPDxcGTJk0Pz587Vy5UpVq1ZNw4YN08GDB5/tTQEAAAAAwA4RotjQnTt3tGLFCgUHB8vV1VUZMmRQuXLltGzZMt2+fdtQH3///bfc3d31xhtvyMvLS6Ghofr666+VO3duubq6ysPDQ5KUJUsWubi4WM/r3LmzcubMKW9vb2XIkEGDBg1SnTp15OXlpYCAADVo0EBHjhx54vVjY2PVrFkz9e3bV3nz5pW3t7c6d+4sSTp8+PAzvCsAAAAAANinVLYu4FW2efNmXbx4UTVq1LDuq1Gjhn788Ud9//33qlu37hP7aNq0qX744QdVrFhRBQsWVFBQkGrUqKFMmTI98pxMmTJZwxVJKlGihI4dO6bx48fr+PHjOnXqlA4fPiyz2fzE62fMmFFNmjTRypUrdeDAAf399986dOiQJBk6HwAAAAAAR8GTKDYUFRUlSerYsaN8fX3l6+urTz/9VJIeO6Xnzp071tfe3t5at26dpk2bptKlS2vTpk2qW7euli5d+sjzXV1dE2x/9913ql27tk6fPq2iRYvq008/VUREhKF7uHDhgmrXrq1FixYpW7ZsatKkyWOvDQAAAACAo+JJFBu5dOmSNm/erPr166tFixYJjs2cOVNLlizRkSNHlDp1al2/ft167Pr167p06ZJ1e9asWcqUKZNq1KihoKAgffLJJ2rRooVWr16tevXqyWQyPbGWKVOmqEGDBurfv79134YNGyTd+3afx/WxcuVKXblyRWvXrlXq1Kkl/d80nhfxzUAAAAAAANgKIYqNrFixQnfu3NGHH36oPHnyJDjWtm1bLV26VPPnz1dAQIBWr16tkJAQpU+fXmPHjpWzs7O17X///afx48fL1dVVBQoU0PHjx3Xw4EE1a9ZMkuTu7i5J2rdvn/Lly5dkLTly5NDOnTu1f/9+eXh4aOPGjZozZ44kKS4uTmnSpHnkfWTPnl2xsbFas2aNihUrpuPHj2vIkCHWcwEAAAAASCkIUWwkKipKZcuWTRSgSNKbb76pt99+WytWrNCqVat05coVtWjRQh4eHgoPD9fVq1etbTt27Kj4+HgNHDhQFy5cUJYsWdS4cWO1adNGklS6dGkVKVJEjRo10ogRI5KspU+fPurbt69CQ0Pl4uKiAgUKaPjw4erWrZv27t2r4sWLP/I+qlWrpv3792vo0KG6fv26vLy89P7772vDhg3au3evGjdu/JzvFAAAAAAA9sFkYc4F7MjevXslSfM2ntbJ6Ms2rgYAkJJ4e72mwV2qv5C+b968qYMHD6pgwYLWp0Bhvxgvx8J4ORbGy7EwXvfc/xzq5+f3xLYsLAsAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgQCpbFwAkxSurp61LAACkMPx/CwAAeF6EKLBLHRoH2boEAEAKZDZb5ORksnUZAADAQTGdB3YnLi5OsbGxti4DBsTGxurAgQOMl4NgvBwL4/ViEKAAAIDnQYgCu2SxWGxdAgywWCyKjY1lvBwE4+VYGC8AAAD7Q4gCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAK7ZDKZbF0CDDCZTHJzc2O8HATj5VgYLwAAAPuTytYFAA9zcXGRm5ubrcuAAW5ubvL19bV1GTCI8XIsKWm8zGaLnJwIgwAAgOMjRIFdGj9vi6LPx9i6DADAc/LK6qkOjYNsXQYAAECyIESBXYo+H6OT0ZdtXQYAAAAAAFasiQIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABggEOGKGFhYYqIiEjyWEREhMLCwgz3FRkZqeDgYOv2X3/9pU2bNj1XfQ/3+bBH1bh69Wr5+vqqT58+MpvNT30vz2Lr1q3y8fHRP//880KvAwAAAACAo0tl6wJsLTw8XE2bNrVut2nTRvXq1VOlSpVeah2rV6/Wxx9/rMaNG6t3794ymUzq1auX7t69+1LrAAAAAAAASXvlQ5S0adMqbdq0Nq1hzZo1+vjjjxM9YePh4WHDqgAAAAAAwIMccjrP0/Dx8dHixYvVvHlz+fv7q1y5cho3bpz1+INTb4KDgxUdHa1x48ZZp9Fcu3ZNffr0UenSpVWsWDE1a9ZMe/fuTXCNBQsW6J133pG/v7/atm2rmJgYw/WtXbtWPXr0UMuWLRNNUXpwOs/WrVvl6+urzZs3q2bNmipcuLCqVaumH374wdr+7t27+uqrr1SuXDkFBASoc+fOGjRoUIIpQTt27ND7778vf39/1a5dW4cOHUpwzbt372rmzJkKCQmRn5+fQkJCNG/ePOvx+3WsX79eISEh8vf3V7NmzXT27FkNHDhQxYsXV5kyZTRx4kTD7wEAAAAAAI4gxYcokjRs2DDVq1dPq1atUmhoqCIjI7V9+/ZE7RYvXqzs2bMrPDxckZGRslgs+vDDD3X69GlNnjxZCxcuVEBAgBo3bqwDBw5IklauXKkBAwaoefPmWr58uYoWLaq5c+caqmvdunXq3r27AgIC1L179ye2v3v3rkaMGKFevXpp5cqVeuutt/Tpp5/qxo0bkqSRI0dqwYIF+vzzz7VkyRJlyZJFs2fPtp5/+vRphYeHq2DBglq6dKk6dOigCRMmJLjG0KFDNWHCBHXs2FHfffedmjZtqkGDBmnmzJkJ6pg4caJGjhypb775RocOHVKdOnWUOnVqLVq0SI0aNdLo0aN1+PBhQ+8DAAAAAACO4JUIUerWras6deooZ86catu2rdKnT6+dO3cmapcxY0Y5OzvL3d1dGTJk0O+//64///xTo0ePVpEiRZQ3b15r6DFr1ixJ0uzZs1W9enU1bdpUuXPnVuvWrVW5cuUn1vTXX3+pe/fuKlWqlHbs2JHgiZLH6dq1q8qUKSNvb2+1b99e169f15EjRxQbG6tvv/1WXbt21TvvvKO8efOqd+/e8vX1tZ67cOFCZc6cWZ9//rny5s2rkJAQtWvXznr8+vXrmjdvnjp37qxatWrJ29tbzZo1U5MmTTRlyhRZLBZr2y5dusjPz0+BgYEqXbq03Nzc9Mknnyh37txq06aN9R4BAAAAAEgpHDJESZUqlcxmc5LHzGazUqVKuNRL3rx5E2x7eHgoPj7+idfZv3+/LBaLKleurMDAQOvPrl27dOzYMUnSkSNH5Ofnl+C8wMDAJ/Z9+fJlde3aVTNmzFCFChXUq1cv/fvvv088L0+ePNbX6dKlkyTFx8fr2LFjunXrlgICAqzHTSaTihUrZt0+cuSIfH195ezsbN1XtGhR6+vjx48rPj4+wTmSVLJkSV26dEmXLl2y7suVK5f1tbu7u9544w2ZTCZJkqurqyQpLi7uifcDAAAAAICjcMiFZdOnT6+rV68meSwmJkaenp4J9rm4uCRq9+BTFY9iNpuVLl06RUVFJTr2YJ8PBzqpU6d+Yt9FixZVq1atJEmDBw9WzZo19dFHH+mbb75JEHI87rr3WSwWa3D0uPsymUyJan0wcHrUuffPebDtw0GVk5ND5nEAAAAAABjmkJ98CxUqpH379iV60iEuLk579uxJ9GTIs3rrrbd0/fp1xcfHK1euXNafqVOnasOGDZKkggULJpoa9PDCs0l5MITIkiWLvvjiC23fvj3RGiVG5cqVS66urvrzzz8T7N+9e7f1dYECBRK9b/v27bO+zps3r1KnTq0//vgjQR87duxQlixZEoVTAAAAAAC8ShwyRGnQoIHMZrM6duyoXbt2KTo6Wtu2bVP79u2VKlUqNWjQ4Jn7Tps2rU6ePKmLFy+qfPnyKliwoLp166bff/9dp06d0pAhQxQVFWWdItS6dWutX79e06ZN08mTJzV79mytXbv2qa9btWpV1atXTxMnTkxy0dsncXNzU1hYmMaOHasffvhBJ06c0LBhwxKEKI0bN1ZsbKw+++wzHTt2TD/++KMiIyOtx9OlS6eGDRtq7NixWrlypU6dOqW5c+fq22+/VXh4uHW6DgAAAAAAryKHDFEyZsyoBQsWKH369OrUqZNCQkLUvXt3Zc6cWQsXLnyuJybCwsK0adMmhYeHy9nZWTNmzFDhwoXVtWtX1a5dW9u3b9e4ceNUpkwZSVKlSpX05ZdfasmSJapVq5bWrVun8PDwZ7p27969lT17dn300Ue6cuXKU5/fpUsX1a5dW71791bdunV19uxZValSxToFKFu2bPrmm2/077//ql69eho6dGiChWUlqWfPnmrWrJlGjhypGjVqaN68eerbt+8z3xMAAAAAACmFyWJkcRA4hPXr16tYsWLKmDGjdV94eLiyZ8+uwYMH27Ay4+5PhZq38bRORl+2cTUAgOfl7fWaBnepbusyXribN2/q4MGDKliwoNzd3W1dDp6A8XIsjJdjYbwcC+N1z/3PoUaWBnHIJ1GQtOnTp6tHjx46ePCgTp8+rZkzZ+r3339X7dq1bV0aAAAAAAAOjxAlBRk5cqTSpk2r5s2bq2bNmvruu+80ZswYlS5d2talAQAAAADg8BzyK46RtDfeeEPjxo2zdRkAAAAAAKRIPIkCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgQCpbFwAkxSurp61LAAAkA/49BwAAKQkhCuxSh8ZBti4BAJBMzGaLnJxMti4DAADguTGdB3YnLi5OsbGxti4DBsTGxurAgQOMl4NgvBxLShovAhQAAJBSEKLALlksFluXAAMsFotiY2MZLwfBeDkWxgsAAMD+EKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAK7ZDKZbF0CDDCZTHJzc2O8HATjBQAAADyfVLYuAHiYi4uL3NzcbF0GDHBzc5Ovr6+ty4BBr/J4mc0WOTkRHgEAAOD5EKLALo2ft0XR52NsXQaAFMArq6c6NA6ydRkAAABIAQhRYJeiz8foZPRlW5cBAAAAAIAVa6IAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiPMGKFSv0wQcfKCAgQIGBgXrvvfc0f/78ZL/O5cuXtWjRIut2WFiYIiIinrofs9msSpUqqXDhwvrvv/8SHb9y5YqaN28uPz8/NWjQIMk+oqKi5OPj89TXBgAAAAAgJUtl6wLs2eLFizVo0CD16tVLxYoVk8Vi0ZYtWzRw4EBdvHhRHTt2TLZrDR8+XP/884/ef//95+rn119/VUxMjDJlyqTFixerdevWCY6vWLFCO3bs0Lfffqts2bIl2Uf16tVVvnz556oDAAAAAICUhhDlMb799lu99957CZ7YyJMnj86dO6dZs2Yla4hisViSpZ8lS5aoWLFieuONN7Ro0SJ9+OGHMplM1uNXr15VlixZ5O/v/8g+XF1d5erqmiz1AAAAAACQUjCd5zGcnJy0a9cuxcTEJNjfunVrLViwwLp969YtjR49WlWqVJGfn5/q1KmjtWvXWo8nNT3mwX0RERFaunSptm3blqDdjRs31LNnTxUvXlzFihVTRESEbt68+ch6Y2Ji9MMPPygoKEghISH6+++/tWXLFuvxiIgIRUZG6syZM/Lx8VFUVJQiIyMVGhqqbt26qWjRovriiy8S1Xvjxg198cUXKleunAIDAxUaGqp9+/ZZjy9atEi1atWSv7+/AgIC1KRJE+3du9fo2wwAAAAAgEMgRHmMVq1a6cCBA6pQoYJat26tKVOmaM+ePfLw8FDu3Lmt7bp3765ly5apT58+WrFihd5++2116dJFP/zwg6Hr9OrVS++++64CAwP1yy+/WPevW7dOWbNmVVRUlIYPH67Vq1dr6tSpj+xn5cqVio+PV0hIiEqWLKlMmTIlWL+lV69eCg8PV/bs2fXLL7+oevXqkqTt27crc+bMWr58ucLCwhL127VrV/30008aMmSIli1bppw5cyo8PFwxMTFav369BgwYoFatWun777/XzJkzdfv2bfXu3dvQvQMAAAAA4CiYzvMY1apVU/bs2TVr1ixt2bJFmzdvliR5e3tr8ODBKlasmI4dO6YNGzZo0qRJqlSpkiSpU6dOOnTokCZNmqS33377idfx8PCQq6urUqdOrSxZslj3+/v7q1u3bpKkN998U0FBQQmeAHnYkiVLFBAQoNdff12S9O6772r+/Pk6f/68smbNKg8PD7m7u8vZ2TnBdSSpc+fO8vDwkCTt3LnTuv/48eP66aefNH36dJUrV06S1K9fP6VPn16XL19WhgwZNGjQINWuXVuS5OXlpQYNGmjAgAFPvG8AAAAAABwJIcoTBAQEKCAgQGazWYcOHdLmzZs1Z84cffjhh1q/fr0OHz4sSSpWrFiC80qUKKFRo0Y917W9vb0TbHt6eio6OjrJtocOHdL+/fsTPAFSo0YNzZkzR4sWLVKHDh0eeZ1MmTJZA5SHHTlyRNK99+G+NGnSqGfPntYajx07pvHjx+v48eM6deqUDh8+LLPZbOQWAQAAAABwGEzneYR///1X/fv317///ivp3voovr6+ateunWbOnKkbN25o+/btjzzfYrEoVapHZ1R37959Yg3Ozs6G642KipIkDR48WL6+vvL19VVoaKike98y9LhQ43GLyD7uHiTpu+++U+3atXX69GkVLVpUn3766TN9NTMAAAAAAPaOEOURXFxctGjRIq1YsSLRsfTp00uSMmfObF2A9Y8//kjQZseOHcqXL58kKXXq1JKk69evW4+fPHkyQfsHv0HnacXHx2vFihUqV66cli9frmXLlll/2rdvrzNnzlinIj2tvHnzSlKChWLv3Lmj4OBgrVmzRlOmTFGDBg00dOhQNW3aVCVKlNDp06clJd83DgEAAAAAYA+YzvMIGTNmVKtWrTRmzBjduHFD1apVU7p06XT06FFNmDBBpUqVUvHixSVJlStXVv/+/WUymZQrVy6tWrVKGzZs0OjRoyXdmwpjMpkUGRmpsLAw7d27V0uXLk1wPXd3d50/f16nT59Wzpw5n6rWH3/8UZcvX1aLFi301ltvJTj2+uuva9asWZo/f74qV6781O9D7ty5VbVqVfXv31/9+vVTtmzZNGXKFN2+fVslS5ZUVFSUdu7cqf3798vDw0MbN27UnDlzJElxcXFKkybNU18TAAAAAAB7xJMoj9G1a1cNGjRI27dvV1hYmN59910NGTJEZcuW1aRJk6ztRo0apbffflu9evVS7dq19eOPPyoyMlLVqlWTJOXMmVP9+/fX+vXr9e6772rBggX65JNPElyrbt26io2NVc2aNXXu3LmnqjMqKkq5c+dWUFBQomPp0qXT+++/r59++klnzpx5hnfh3hShEiVKqEuXLqpfv77Onj2r6dOnK2PGjOrTp48yZ86s0NBQvf/++/rxxx81fPhwSeJrjgEAAAAAKYrJwpwL2JH7wcu8jad1MvqyjasBkBJ4e72mwV2q27qMp3bz5k0dPHhQBQsWlLu7u63LwRMwXo6F8XIsjJdjYbwcC+N1z/3PoX5+fk9sy5MoAAAAAAAABhCiAAAAAAAAGPDMC8ueOHFCmzdv1s2bNxN9fa7JZFKHDh2euzgAAAAAAAB78UwhyvLlyxUREfHIr7AlRAEAAAAAACnNM4UoEyZMUNmyZTVw4EBlz55dJpMpuesCAAAAAACwK8+0JsqZM2fUqlUr5ciRgwAFAAAAAAC8Ep4pRMmdO7fOnj2b3LUAAAAAAADYrWcKUXr06KEJEyZo69atun37dnLXBAAAAAAAYHeeaU2UQYMG6dKlS2revHmSx00mkw4cOPA8dQEAAAAAANiVZwpRateundx1AAAAAAAA2LVnClE6duyY3HUAAAAAAADYtWcKUSQpLi5OS5Ys0bZt23T16lW99tprKl68uOrWrStXV9fkrBEAAAAAAMDmnilEuXr1qpo1a6ZDhw7p9ddfV5YsWXTixAmtXLlSc+fO1bfffisPD4/krhUAAAAAAMBmnunbeb788kv9+++/mjNnjjZu3KgFCxZo48aNmjNnji5duqQxY8Ykd50AAAAAAAA29UwhyoYNG9S1a1cVL148wf7ixYurc+fOWrduXbIUBwAAAAAAYC+eKUS5ceOGcubMmeSxnDlz6sqVK89TEwAAAAAAgN15phAlT548+vHHH5M89uOPPypXrlzPVRQAAAAAAIC9eaaFZVu2bKkePXro7t27qlGjhjJnzqyLFy9q5cqVWrhwoT7//PPkrhOvGK+snrYuAUAKwb8nAAAASC7PFKJUr15dJ0+e1KRJkzR//nxJksVikYuLi9q3b6+GDRsma5F49XRoHGTrEgCkIGazRU5OJluXAQAAAAf3TCGKJLVv316hoaHatWuXrl69Kk9PTxUpUkSenvwXPzyfuLg4xcbGys3Nzdal4AliY2N14sQJ5c6dm/FyAK/yeBGgAAAAIDk8c4giSenTp1fFihWTqxbAymKx2LoEGGCxWBQbG8t4OQjGCwAAAHg+hkOUggULasGCBfL391eBAgVkMj36v+qZTCYdOHAgWQoEAAAAAACwB4ZDlA4dOihbtmzW148LUQAAAAAAAFIawyFKx44dra87der0QooBAAAAAACwV8+0Jsr27dsfecxkMilt2rTKmTOn0qVL98yFAQAAAAAA2JNnClHCwsKs03keXKDwwSk+Tk5Oqlu3rgYMGCBnZ+fnLBMAAAAAAMC2nilEmThxorp27aq6deuqZs2aypQpk/777z+tXbtW8+fP18cffyxnZ2eNGTNGb7zxhtq1a5fcdQMAAAAAALxUzxSiTJ06VU2aNNGnn35q3ZcnTx4VL15c7u7uWr9+vWbPni1JmjVrFiEKAAAAAABweE7PctL+/ftVvnz5JI+VKlVKu3fvliT5+Pjo7Nmzz14dAAAAAACAnXimECVLlizaunVrkse2bt2qzJkzS5IuX76s9OnTP3t1eGXxFdqOwWQyyc3NjfFyEIwXAAAA8HyeaTpP48aN9eWXXyo2NlYhISHKlCmTLl68qB9++EFz5sxRp06d9O+//2rixIkqVapUcteMFM7FxUVubm62LgMGuLm5ydfX19ZlwKCnHS+z2SInJwIXAAAA4L5nClFatmyp2NhYTZs2zbr2icVikYeHhzp16qQ2bdpo2bJliouLU/fu3ZO1YLwaxs/boujzMbYuA3hleWX1VIfGQbYuAwAAALArzxSiSFLHjh3VsmVL/fnnn/rvv/+ULVs2FSxYUGnTppUk1apVS3Xr1k2uOvGKiT4fo5PRl21dBgAAAAAAVs+0Jsp9cXFxunnzpq5evao8efLo3LlzslgskiRnZ+dkKRAAAAAAAMAePPOTKBMnTtTkyZN169YtmUwm+fv7a/To0bp8+bJmzJjBgrIAAAAAACBFeaYnUebMmaPIyEi1aNFCCxcutD59EhoaqtOnT2vMmDHJWiQAAAAAAICtPVOIMnv2bLVu3VpdunRRoUKFrPsrVqyorl27auPGjclWIAAAAAAAgD14phDlzJkzKlmyZJLH8uTJo4sXLz5XUQAAAAAAAPbmmUKUHDlyaNeuXUke27dvn3LkyPFcRQEAAAAAANibZ1pYtkGDBoqMjJSrq6sqVaokSbp586bWrl2ryZMnq0WLFslZIwAAAAAAgM09U4jy4Ycf6p9//tHIkSM1cuRISVKzZs1ksVhUu3ZttWnTJlmLBAAAAAAAsLVnClFMJpMGDBig8PBw/f7777py5Yo8PDxUokQJ5cuXT/PmzVPTpk2Tu1YAAAAAAACbeaoQ5aefftLSpUtlMplUp04dVaxYUd7e3tbjO3bsUP369XX48GFCFAAAAAAAkKIYDlFWrFihTz75RKlTp5aLi4u+//57jR07Vu+8846uXLmigQMHatWqVXJ2dmZNFAAAAAAAkOIYDlG++eYbFSlSRNOnT5eLi4t69uyp8ePHK3/+/GrRooXOnj2r8uXL67PPPlPu3LlfZM0AAAAAAAAvneEQ5eTJk/riiy+ULl06SVLHjh1VvXp1tW/fXnFxcRozZoxCQkJeWKEAAAAAAAC2ZDhEuXnzpnLkyGHd9vLyksViUapUqbRixQplypTphRQIAAAAAABgD5yMNrRYLHJ2drZu33/drVs3AhQAAAAAAJDiGQ5RHiVr1qzJUQcAAAAAAIBde+4QxWQyJUcdAAAAAAAAds3wmiiS1K9fP+vCshaLRZLUp08fpU2bNkE7k8mkb775JplKxNNYsWKF5syZoyNHjshkMilPnjx6//331ahRo2S7RnBwsOrVq6dOnTolW58AAAAAANg7wyFKiRIlJP1fePKofUlt4+VYvHixBg0apF69eqlYsWKyWCzasmWLBg4cqIsXL6pjx47Jdp00adIkS18AAAAAADgKwyHK7NmzX2QdSAbffvut3nvvPTVo0MC6L0+ePDp37pxmzZqVbCFKxowZk6UfAAAAAAAcyXOviQL74eTkpF27dikmJibB/tatW2vBggWS7k3FmTBhglq2bCl/f3+98847WrRoUYL2ixYtUq1ateTv76+AgAA1adJEe/futR4PDg5WZGSkJCkyMlLNmzfXlClTVKFCBfn5+Sk0NFTHjh17wXcLAAAAAMDLRYiSgrRq1UoHDhxQhQoV1Lp1a02ZMkV79uyRh4eHcufObW03YcIEBQYGatmyZWratKn69u2r1atXS5LWr1+vAQMGqFWrVvr+++81c+ZM3b59W717937kdXfs2KE//vhDU6ZM0bfffqtLly6pf//+L/x+AQAAAAB4mZ5qYVnYt2rVqil79uyaNWuWtmzZos2bN0uSvL29NXjwYBUrVkySVK5cOevUnjx58mj37t365ptvVL16dWXIkEGDBg1S7dq1JUleXl5q0KCBBgwY8Mjr3rlzR8OHD5enp6ckqVGjRhoxYsSLvFUAAAAAAF46QpQUJiAgQAEBATKbzTp06JA2b96sOXPm6MMPP9T69eslSaVKlUpwTmBgoDZt2iTp3mLBx44d0/jx43X8+HGdOnVKhw8fltlsfuQ1M2fObA1QJMnDw0Px8fHJf3MAAAAAANgQ03lSiH///Vf9+/fXv//+K+ne+ii+vr5q166dZs6cqRs3bmj79u2SpFSpEmZnZrNZTk73fhW+++471a5dW6dPn1bRokX16aefKiIi4rHXdnFxeQF3BAAAAACAfeFJlBTCxcVFixYtUo4cOdS6desEx9KnTy/p3hMjkhIsEitJO3fulK+vryRpypQpatCgQYI1TTZs2CDp3ldXm0ymF3YPAAAAAADYM0KUFCJjxoxq1aqVxowZoxs3bqhatWpKly6djh49qgkTJqhUqVIqXry4JGnVqlUqUqSIgoKC9MMPP2j9+vWaNGmSJClHjhzauXOn9u/fLw8PD23cuFFz5syRJMXFxSlNmjQ2u0cAAAAAAGyJECUF6dq1q7y9vbVw4ULNnTtXt27d0uuvv653331Xbdq0sbarV6+e1q9fr6FDh8rb21ujR49WxYoVJUl9+vRR3759FRoaKhcXFxUoUEDDhw9Xt27dtHfvXmsQAwAAAADAq4YQJYWpW7eu6tat+9g22bJl08CBA5M8ljNnTn399deJ9levXt36euPGjdbXnTp1UqdOnRK0rV+/vurXr/8UVQMAAAAAYP9YWBYAAAAAAMAAQhQAAAAAAAADmM7zinlwKg4AAAAAADCOJ1EAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwIJWtCwCS4pXV09YlAK80/gYBAACAxAhRYJc6NA6ydQnAK89stsjJyWTrMgAAAAC7wXQe2J24uDjFxsbaugwYEBsbqwMHDjBeDuJpx4sABQAAAEiIEAV2yWKx2LoEGGCxWBQbG8t4OQjGCwAAAHg+hCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKLBLJpPJ1iXAAJPJJDc3N8YLAAAAwCshla0LAB7m4uIiNzc3W5cBA9zc3OTr62vrMl5JZrNFTk6EVwAAAMDLRIgCuzR+3hZFn4+xdRmAXfLK6qkOjYNsXQYAAADwyiFEgV2KPh+jk9GXbV0GAAAAAABWrIkCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECI8hyCg4Pl4+Nj/SlQoICKFi2q0NBQbd++3domMjLykX1ERUXJx8fHuu3j46OoqChJUmRkpIKDg5Ot3n/++Uc+Pj7aunVrsvUJAAAAAMCrIpWtC3B04eHhCg8PlyRZLBZduXJFo0aNUqtWrfT9998/8fzq1aurfPnyj+y7adOmyVZrjhw59Msvv8jT0zPZ+gQAAAAA4FVBiPKc3N3dlSVLFut21qxZ1b9/f1WoUEHr169/4vmurq5ydXVN8ljatGmVNm3aZKvV2dk5Qa0AAAAAAMA4pvO8AKlS3cumXFxcJEkXLlxQx44dFRAQoFKlSmnIkCG6e/eupMTTeR704HSe+1Nxli1bppo1a8rf318ffPCB/vjjD2v7iIgIde/eXQMGDFDRokVVpkwZDR06VHFxcQn6uD+dJywsTCNHjtRnn32m4sWLq2jRourRo4euX79u7fPYsWP68MMPFRgYqHLlyqlHjx66cOGC9fjJkyfVsmVLFStWTIGBgWrZsqUOHz6cXG8lAAAAAAB2gxAlmZ07d04DBgyQu7u7KlasKElavHixSpQooe+++04ff/yxZs6cqaVLlz5T/0OHDlXbtm21dOlS5cmTR+Hh4Tp9+rT1+Lp163T+/HnNnz9fAwcO1LJlyzRo0KBH9jdz5kxlzpxZixcv1ogRI7RhwwbNnDnTei9NmjRRrly5tHjxYk2aNEnXr19Xw4YNdfPmTUlS9+7dlS1bNi1ZskSLFi2Sk5OTOnbs+Ez3BgAAAACAPWM6z3OaPHmyZsyYIUm6c+eO4uLilDdvXo0ePVqvv/66JKlq1ar63//+J0nKmTOnZs2apX379qlBgwZPfb3WrVurZs2akqQvvvhCv//+uxYuXKgePXpIktKnT68RI0bIzc1Nb731ls6fP69Bgwbp448/TrK/fPnyqXv37pIkb29vBQUFadeuXZKkefPmKXv27Ordu7e1/ejRo1W6dGmtWbNG9evX199//62yZcvKy8tLqVOn1uDBg3X8+HGZzWY5OZHRAQAAAABSDkKU59SoUSOFhYVJkpycnJQhQwZ5eHgkaOPt7Z1g29PTU7dv336m65UqVcr6OnXq1CpcuLCOHDli3efv7y83NzfrdmBgoOLj43XixAm99tprifrLkydPgm0PDw9dvXpVknTgwAH99ddfCgwMTNDm9u3bOnbsmCSpW7duGjx4sL799luVLFlS5cuXV82aNQlQAAAAAAApDiHKc/L09FSuXLke28bZ2TnRPovF8kzXu7/eyn13795NEFikTp06wXGz2fzIGqT/W7clKWazWaVLl9bnn3+e6Nj9oKhp06aqVq2aNm/erN9++01jx47VxIkTtWzZMmXOnNnYTQEAAAAA4AB4XMDB7N271/o6Li5O+/fvV6FChaz79u/fb120VpJ27dolNzc35c6d+6mvlT9/fh07dkw5cuRQrly5lCtXLnl6emrw4ME6cuSILl26pAEDBig+Pl7169fXiBEjtGLFCl24cEHbtm17vhsFAAAAAMDOEKI4mNGjR2vTpk06evSoPvvsM8XGxuqDDz6wHo+Ojlb//v117NgxrVu3TmPHjlVoaGiCKT5GNWnSRNeuXdNHH32kQ4cO6dChQ+rWrZv27t2rt956S56entq0aZN69+6tgwcP6vTp05o/f751mhEAAAAAACkJ03kcTOPGjTVs2DCdOXNGRYoU0ezZs5U1a1br8YCAADk5OalBgwby8PBQs2bN1K5du2e6Vs6cOTVnzhx9+eWXaty4sZydnVW0aFHNmjVLGTNmlCRNnTpVw4YNU/PmzRUbG6uCBQtqypQpevPNN5PlfgEAAAAAsBcmy7MuzoGX6p9//lGVKlU0a9asBIvLPigiIkLR0dGaPXv2S64u+dyfrjRv42mdjL5s42oA++Tt9ZoGd6n+1OfdvHlTBw8eVMGCBeXu7v4CKkNyYrwcC+PlWBgvx8J4ORbGy7EwXvfc/xzq5+f3xLZM5wEAAAAAADCAEAUAAAAAAMAA1kRxEG+88YYOHz782DZDhw59SdUAAAAAAPDq4UkUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADEhl6wKApHhl9bR1CYDd4u8DAAAAsA1CFNilDo2DbF0CYNfMZoucnEy2LgMAAAB4pTCdB3YnLi5OsbGxti4DBsTGxurAgQOMlw0QoAAAAAAvHyEK7JLFYrF1CTDAYrEoNjaW8QIAAADwSiBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFdslkMtm6BBhgMpnk5ubGeAEAAAB4JaSydQHAw1xcXOTm5mbrMmCAm5ubfH19bV2G3TCbLXJyIlACAAAAUipCFNil8fO2KPp8jK3LAAzzyuqpDo2DbF0GAAAAgBeIEAV2Kfp8jE5GX7Z1GQAAAAAAWLEmCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGCAzUOUsLAw+fj4JPgpXLiwKlWqpAEDBig2Nval1hMVFSUfH5/HtgkODlZkZKTh9s8jLi5OnTt3lr+/v8qVKyez2ZyojY+Pj6KiohLsi4+PV8eOHVWkSBH98ssvL6w+AAAAAABeFalsXYAkvfvuu+rVq5d1++bNm/rll180ZMgQmc1m9evXz3bFPUH16tVVvnz5F9b/zz//rLVr12ry5Mny8fGRk9OTc687d+6oe/fu2rJli6ZMmaJSpUq9sPoAAAAAAHhV2EWI4urqqixZsiTYlytXLu3bt0+rV6+26xDF1dVVrq6uL6z/q1evSpIqVqwok8n0xPYPBijTpk1TsWLFXlhtAAAAAAC8Smw+nedx0qRJo1Sp/i/niYuL04gRI1S+fHkFBgbqgw8+SDBVJSoqShUqVNDChQtVrlw5BQYGqkOHDjp37py1zYNTcR63b+HChSpfvryKFCmitm3bKjo6OskaH57Oc+PGDX3xxRfW64eGhmrfvn2PvMezZ8/qo48+UlBQkAICAtSyZUsdOnRIkhQZGamIiAhJUoECBRLV+LD7Acpvv/2mr7/+OlGAcuXKFfXv318VK1aUv7+/GjVqpK1bt1qPR0ZGKjQ0VN26dVPRokX1xRdfSJJ27typpk2byt/fX5UqVVL//v11/fp163lnzpxRt27dVKZMGRUqVEgVKlTQiBEjkpx6BAAAAACAo7LLEOXOnTvatGmTli9frjp16lj39+zZU1u2bNHIkSO1dOlSvfvuu2rbtq02bdpkbfPff//pm2++0ejRo/XNN9/o7NmzatWqle7cufNUNcyePVtjxozR3LlzdfnyZXXo0EEWi+WJ53Xt2lU//fSThgwZomXLlilnzpwKDw9XTExMorbXr19X48aNde7cOU2cOFHz58+Xq6urQkNDFR0drfDwcH322WeSpF9++UXh4eGPvO7du3f10Ucfae3atfr0009VpEiRRMfDw8O1Y8cOjRgxQlFRUXrrrbfUsmVL7dmzx9pu+/btypw5s5YvX66wsDAdOnRILVq0UPny5bVixQqNHDlS+/fvV3h4uPX9aNeuna5du6avv/5aa9asUXh4uKZNm6aNGzcaeq8BAAAAAHAEdjGd57vvvtPatWut27du3dLrr7+uli1bqm3btpKkU6dOaeXKlVq2bJkKFiwoSWrRooUOHTqk6dOnq1KlSpLuLag6bNgwFS5cWJI0YsQIVa9eXb/99ttTrV0yYsQIFShQQJI0bNgwhYSE6LffflPZsmUfec7x48f1008/afr06SpXrpwkqV+/fkqfPr0uX74sT0/PBO1XrFihy5cvKyoqShkzZpQkffnll3r77bc1d+5cffLJJ/Lw8JCkRNOdHjZ27FjFx8fL19dXEyZMUEhIiPVc6V4Is3//fn333Xd66623JEn9+/fX3r17NX36dI0ZM8batnPnztZzP/74YwUFBVnHwdvb21rjtm3bVKRIEdWpU0fvvvuucuTIIUlq3ry5pk6dqsOHD+vtt99+wjsNAAAAAIBjsIsQJTg4WB999JEsFov27NmjQYMGqWzZsmrbtq11Os+BAwckSU2aNElwbnx8vNKnT2/dTps2rTVAkaS8efPK09NTR44cMRyipE2b1hqgSPeCg/t9PC5EOXLkiCQpICDAui9NmjTq2bPnI9t7e3tbAxTp3hor/v7+1r6MMpvNmj17ttKkSaM6deqoT58+Gj16dIJreXh4WAMUSTKZTCpevHiCKVGZMmVKEL4cOHBAp06dUmBgYKJrHjt2TKVKlVJoaKjWrFmjPXv26NSpUzp8+LAuXrzIdB4AAAAAQIpiFyFK2rRplStXLkn3AousWbOqRYsWcnZ2ti4qe3/qyNy5c5U2bdoE5z/4jTWpU6dO1P/du3fl7Oz8yOs/PNUnqbZms1kuLi6PvY8H128x4lHTg8xm81P31bVrV+XPn1/SvWlPffr0UdmyZfXBBx889loWiyXBtR5eJNdsNqtWrVrWJ1EelDFjRt28eVOhoaG6deuWqlWrpnr16snf319NmzZ9qvoBAAAAALB3drkmSunSpdWiRQvNmzdPP/30kyRZA4ILFy4oV65c1p+oqChFRUVZz71y5YpOnz5t3f7rr790/fp1+fr6SroXsjy4KOr169d16dKlBNe/evWq/v77b+v24cOHde3atQRPcSQlb968kqS9e/da9925c0fBwcFas2ZNovY+Pj46efJkguvfvn1b+/btU758+R57rYc9GPx88MEHqly5sgYPHqyjR49ar3Xt2rUET7hYLBb98ccfj71W/vz5dfTo0QTv+Z07dzRkyBCdPXvWOk1o1qxZ6ty5s6pXr6506dLp0qVLhtaQAQAAAADAUdhliCJJXbp0kbe3t/r166cbN24of/78qly5sj7//HNt3LhRp0+f1tSpUzV58mS9+eabCc79+OOPtW/fPv3555/65JNPFBgYqBIlSki6N9Vm9erV2rlzp44eParPPvss0ZMnTk5O6tq1q/78809rHyVLllTx4sUfW3Pu3LlVtWpV9e/fX7///rtOnDihPn366Pbt2ypZsmSi9rVq1VKGDBnUtWtX7dmzR4cOHdJHH32kmzdvqmHDhs/1/g0aNEju7u7q1q2bbt++rXLlyqlgwYLq0aOHtm3bpmPHjmnAgAE6cuSI/ve//z2yn/DwcB04cED9+/fXsWPHtGvXLvXo0UMnT56Ut7e3smfPLune+i7R0dHasWOH2rdvr/j4eMXFxT3XPQAAAAAAYE/sNkRJkyaNvvjiC505c0ZfffWVJOmrr75S1apV1bdvX1WvXl3Lli3ToEGDVK9evQTn1qpVS61bt1arVq2UP39+TZ48WSaTSZLUvXt3+fr6qkWLFmrevLkCAgJUtGjRBOdnzJhRderUUfv27dWiRQvlzZs3wcKrjzN48GCVKFFCXbp0Uf369XX27FlNnz49wbon93l4eGjOnDlKnz69mjdvriZNmujWrVuaN2+ecubM+Sxvm1WmTJk0cOBAHTlyREOGDJGzs7NmzJghX19fdezYUe+9957++usvzZw5M8EaLg8LCAjQtGnTdPDgQdWrV0/t2rVT7ty5NXPmTLm4uMjf3189e/bUrFmz9O6776pnz54qUaKEatasmeCJHAAAAAAAHJ3JkoLmXERFRalnz546fPiwrUvBM7ofvMzbeFonoy/buBrAOG+v1zS4S3Vbl/FYN2/e1MGDB1WwYEG5u7vbuhw8AePlWBgvx8J4ORbGy7EwXo6F8brn/udQPz+/J7a12ydRAAAAAAAA7AkhCgAAAAAAgAEpKkSpX78+U3kAAAAAAMALkaJCFAAAAAAAgBeFEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMCAVLYuAEiKV1ZPW5cAPBV+ZwEAAICUjxAFdqlD4yBblwA8NbPZIicnk63LAAAAAPCCMJ0HdicuLk6xsbG2LgMGxMbG6sCBA4zX/0eAAgAAAKRshCiwSxaLxdYlwACLxaLY2FjGCwAAAMArgRAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAV2yWQy2boEGGAymeTm5sZ4AQAAAHglpLJ1AcDDXFxc5ObmZusyYICbm5t8fX1tXcYLYzZb5OREQAQAAADgHkIU2KXx87Yo+nyMrcvAK8wrq6c6NA6ydRkAAAAA7AghCuxS9PkYnYy+bOsyAAAAAACwYk0UAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUVIYHx8fRUVF2boMAAAAAABSHEIUAAAAAAAAAwhRAAAAAAAADCBESaHMZrMmT56skJAQFS5cWEWLFlWrVq30999/W9v4+Pho7ty5+uCDD+Tn56datWppw4YNT93H4sWL1bx5c/n7+6tcuXIaN27cS71XAAAAAABeBkKUFGrWrFmaPn26IiIitHbtWo0fP14nT57U0KFDE7QbOXKk6tSpo+XLl6tixYrq2LGjdu7c+VR9DBs2TPXq1dOqVasUGhqqyMhIbd++/aXdKwAAAAAALwMhSgr15ptvatiwYapcubK8vLxUpkwZVatWTUeOHEnQrn79+mratKny5Mmjjz76SH5+fpozZ85T9VG3bl3VqVNHOXPmVNu2bZU+fXprEAMAAAAAQEqRytYF4MUIDg7W7t27NWbMGJ04cUInTpzQ0aNHlS1btgTtSpUqlWA7MDBQW7Zseao+8ubNm2Dbw8ND8fHxL+CuAAAAAACwHZ5EcWAXL17U4cOHrdsWi0WS5OzsrClTpqhZs2a6fPmyypQpo/79+ys8PDxRH6lSJczR7t69Kyene78WRvtwcXFJtO9+LQAAAAAApBQ8ieLApk+frp9++kmrVq2SJMXExEiSMmbMqP79+6tDhw5q3bp1gvYPhxt79+5VcHCwdXvXrl0qVKiQJGnSpEmG+gAAAAAA4FVAiOLAypYtqxkzZmjp0qUqXry4vv76a6VPn16BgYHKkSOHtmzZouDgYDk5OWn58uVat26dMmfOnKCPb775Rnny5FHhwoW1cOFCHT58WIMGDZIkw30AAAAAAPAqYDqPAytfvrwiIiIUGRmpGjVqaM+ePZo4caLSpUun4cOH69atW3rvvfcUGhqqI0eOqH///rp06ZLOnDlj7aNRo0aaOXOmateurR07dmj69OkqUKCAJBnuAwAAAACAVwFPoji4Fi1aqEWLFon2FypUSAsWLEi0v1GjRgm28+XLp08++STJvo308eCaLPdt3LjxiXUDAAAAAOBoeBIFAAAAAADAAEIUAAAAAAAAA5jO8wpLaioOAAAAAABIGk+iAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGJDK1gUASfHK6mnrEvCK43cQAAAAwMMIUWCXOjQOsnUJgMxmi5ycTLYuAwAAAICdYDoP7E5cXJxiY2NtXQYMiI2N1YEDB1LseBGgAAAAAHgQIQrsksVisXUJMMBisSg2NpbxAgAAAPBKIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAV2yWQy2boEGGAymeTm5sZ4AQAAAHglpLJ1AcDDXFxc5ObmZusyYICbm5t8fX1tXcYTmc0WOTkR9AAAAAB4PoQosEvj521R9PkYW5eBFMArq6c6NA6ydRkAAAAAUgBCFNil6PMxOhl92dZlAAAAAABgxZooAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGpbF3Aq8ZisWjp0qVaunSp/vrrL12/fl05cuRQpUqV1Lp1a2XJksXWJQIAAAAAgCTwJMpLZDab1aFDBw0dOlSVK1fW7NmztW7dOvXu3Vt79+7Ve++9p0uXLtm6TAAAAAAAkASeRHmJZs6cqc2bN2vhwoUqVKiQdf/rr7+uUqVKqUaNGpo+fbo++eQTG1YJAAAAAACSwpMoL4nFYtGcOXNUu3btBAHKfa6urpo1a5a6du0qSTp37py6deum4sWLq1SpUmrbtq1OnjxpbR8REaHOnTsrPDxcRYsW1dSpUxUZGanmzZtr3LhxKlu2rAIDA9W3b1+dPXtWbdq0UZEiRfTOO+9o06ZN1n7OnDmjbt26qUyZMipUqJAqVKigESNGyGw2S5KioqL0zjvvWP+3cOHCql+/vv744w9J0jfffKPAwEDFxsZa+zSbzapQoYLmzp2b/G8kAAAAAAA2Qojykvzzzz+Kjo5W2bJlH9nGy8tLLi4uunnzpsLCwiRJc+bM0ezZs/Xaa6/pgw8+0Llz56zt165dq7Jly2rJkiWqWbOmJGnHjh06ceKE5s6dq969e2vBggVq0KCB3n33XUVFRSlv3ryKiIiQxWKRJLVr107Xrl3T119/rTVr1ig8PFzTpk3Txo0brdc5e/as5s+frxEjRmjp0qVyc3Oz9lGrVi3Fx8dr3bp11va//vqrLl++bK0JAAAAAICUgBDlJbl48aIkKWPGjAn2t23bVoGBgdafGjVqaNWqVbp69apGjBihAgUK6K233tKgQYOULl06LVy40Hqup6enWrVqpdy5cytHjhyS7j0F0r9/f+XOnVvvvfeeXnvtNZUuXVp169ZV3rx51bhxY12+fFkXLlzQrVu3VKdOHX3xxRcqUKCAcubMqebNmytz5sw6fPiw9Trx8fHq37+/AgIClD9/frVo0UJ///23Lly4oIwZMyo4OFgrVqywtl+6dKmCg4Pl6en5It9SAAAAAABeKtZEeUlee+01SVJMTEyC/f3799etW7ckSbNnz9bGjRt14MABxcTEqESJEgna3r59W8eOHbNu58qVK9F1MmXKpHTp0lm33d3d9eabb1q3XV1dJUlxcXFydXVVaGio1qxZoz179ujUqVM6fPiwLl68aJ3Oc1/evHmtrz08PCTdC1ck6b333lO7du10/vx5ubu764cfftDYsWMNvjMAAAAAADgGQpSXJGfOnMqSJYu2bt2q6tWrW/dny5bN+vr+kxtms1m5c+fWxIkTE/Xj7u5ufX0/EHlQ6tSpE+1zckr6gaObN28qNDRUt27dUrVq1VSvXj35+/uradOmidq6uLgk2nd/SlC5cuWUOXNmrVy5UhkyZFD69OlVrly5JK8JAAAAAICjIkR5SZydndWsWTONHz9ejRs3VoECBRK1OXv2rCTprbfe0vLly+Xh4WGd/hMfH68ePXqoWrVqCUKY5/HLL79o//792rJlizJnzixJunLlii5dumQNSIxwdnZW3bp1tX79eqVPn1516tSRs7NzstQIAAAAAIC9YE2Ul6hVq1aqXLmymjRpokmTJunQoUP6559/tHHjRoWHh2vJkiUqXbq0ateuLU9PT3Xu3Fm7d+/WsWPHFBERoZ9++kk+Pj7JVk/27NklSStWrFB0dLR27Nih9u3bKz4+XnFxcU/VV/369bV79279+uuvqlevXrLVCAAAAACAveBJlJfIyclJo0eP1vfff68lS5Zo1qxZunr1qjJnzqzixYtrzpw51nVQ5syZo+HDh6tly5a6e/euChUqpBkzZiRYm+R5+fv7q2fPnpo5c6ZGjx6tbNmyqXr16sqRI4f27t37VH15e3urSJEiMpvNyVojAAAAAAD2wmR5mnkbwCNYLBa9/fbbatu2rd5///1n7ud+eDNv42mdjL6cXOXhFebt9ZoGd0meKXCO7ubNmzp48KAKFiyYYH0l2CfGy7EwXo6F8XIsjJdjYbwcC+N1z/3PoX5+fk9sy5MoeC7x8fHauHGjfv/9d928eVM1atSwdUkAAAAAALwQhCh4LqlTp9bAgQMlSSNGjHil00sAAAAAQMpGiILn9vPPP9u6BAAAAAAAXji+nQcAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADUtm6ACApXlk9bV0CUgh+lwAAAAAkF0IU2KUOjYNsXQJSELPZIicnk63LAAAAAODgmM4DuxMXF6fY2FhblwEDYmNjdeDAAbsfLwIUAAAAAMmBEAV2yWKx2LoEGGCxWBQbG8t4AQAAAHglEKIAAAAAAAAYQIgCAAAAAABggMnCc/iwIzt37pTFYlHq1KllMrGOhb2zWCyKj49nvBwE4+VYGC/Hwng5FsbLsTBejoXxciyM1z1xcXEymUwqWrToE9vy7TywK/f/cF/lP2BHYjKZ5OLiYusyYBDj5VgYL8fCeDkWxsuxMF6OhfFyLIzXPSaTyfBnUJ5EAQAAAAAAMIA1UQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUWA3zGazxo4dq/LlyysgIEAffvihTp8+beuyXnmTJ09WWFhYgn0HDx5UaGioAgICFBwcrFmzZiU4zli+XFeuXFHfvn1VoUIFFS1aVI0bN9aOHTusx3/77TfVr19fRYoUUbVq1bRq1aoE59++fVv9+/dXmTJlFBgYqB49eui///572bfxyrh06ZI+/vhjlS5dWoGBgWrdurWOHTtmPc7fl/06ceKEAgMDFRUVZd3HeNmXc+fOycfHJ9HP/TFjvOzPsmXLVL16dfn5+alGjRr6/vvvrcf++ecftWnTRkWLFlW5cuU0evRo3b17N8H5c+fOVZUqVeTv768mTZrowIEDL/sWXglbt25N8m/Lx8dHVapUkcR42Zs7d+5ozJgxqly5sgIDA9W0aVP9+eef1uP8e/gcLICdiIyMtJQqVcry448/Wg4ePGgJDw+3VK1a1XL79m1bl/bKmjNnjqVAgQKW0NBQ677//vvPUqpUKUvPnj0tR48etSxevNji5+dnWbx4sbUNY/lytWjRwlKzZk3L9u3bLcePH7f079/f4u/vbzl27Jjl6NGjFj8/P8uoUaMsR48etUybNs3i6+tr+fXXX63nR0REWN5++23L9u3bLbt377bUrVvX0rRpUxveUcrWsGFDy/vvv2/ZvXu35ejRo5ZOnTpZypUrZ7l58yZ/X3YsLi7OUr9+fctbb71lWbJkicVi4d9De7Rp0yaLn5+f5dy5c5bz589bf2JjYxkvO7Rs2TKLr6+vZc6cOZZTp05ZJkyYYClQoIBl586dlri4OEvVqlUtrVu3thw+fNiyfv16S8mSJS1jxoyxnh8VFWXx9/e3LF++3PLXX39ZPv74Y0vJkiUtly5dsuFdpUy3b99O8Dd1/vx5y7p16yw+Pj6WxYsXM152aOzYsZagoCDLzz//bDl58qSlV69elmLFilnOnTvHv4fPiRAFduH/tXfvQVFe5x/AvyCigNwkCo4NjSPlIuzCIiCKyqUMowYYLzWaWgMRxQvGxpVwqVGZNoSogBfAUMRoDVhJlWgpmWqsVDsVFDAlEZBLBIwGuUiAxCDCcn5/MLzjCqbwU2Gt388MM77nnN1z3vPMu7gP57xvZ2enUCgUIjMzUypra2sTcrlc5OTkjODIXkx37twRa9euFU5OTmLevHlqSZTU1FQxe/Zs0dXVJZUlJCQIPz8/IQRjOdxqa2uFtbW1KCoqksp6enqEr6+v2Lt3r9i2bZv41a9+pfYapVIpVq1aJYTojbWtra345z//KdXfuHFDWFtbi6tXrw7PSbxAWltbhVKpFBUVFVJZeXm5sLa2FiUlJby+NFhCQoJ444031JIojJfmSUtLEwEBAQPWMV6apaenR3h7e4sPPvhArXzVqlUiNTVV5OTkCAcHB9Ha2irVHT9+XDg7O0tf4vz8/MSuXbuk+q6uLuHp6SlSU1OH5yReYPfu3RPe3t4iKipKCCEYLw0UGBgo4uLipOPvv/9eWFtbizNnzvDz8AlxOw9phOvXr+PevXuYOXOmVGZkZIRp06ahsLBwBEf2YiotLcXo0aPx17/+FY6Ojmp1RUVFcHNzg46OjlTm7u6O2tpaNDc3M5bDzNTUFGlpaZDJZFKZlpYWtLS00N7ejqKiIrVYAL3xKi4uhhACxcXFUlmfKVOmwNzcnPF6BoyNjZGQkABra2sAQEtLC44cOQILCwtYWVnx+tJQhYWFyMrKwgcffKBWznhpnoqKCkydOnXAOsZLs9TU1OD27dsICAhQKz906BDWrl2LoqIi2Nvbw9jYWKpzd3fHDz/8gPLycty9exe1tbVq8dLR0YGLiwvjNQxSU1PR0dGByMhIAGC8NJCZmRny8vJw69YtqFQqZGVlQVdXF7a2tvw8fEJMopBGuHPnDgBg0qRJauUTJ06U6mj4+Pj4ICkpCS+//HK/ujt37sDCwkKtbOLEiQCA+vp6xnKYGRkZwdPTE7q6ulLZmTNnUFdXhzlz5jw2Xh0dHfjuu+/Q0NAAU1NTjBkzpl8bxuvZ2rZtG2bOnInc3FzExsZCX1+f15cGam9vR0REBN59991+8854aZ7Kykq0tLRgxYoVmDVrFl5//XVcvHgRAOOlaWpqagAAP/74I0JCQjBz5kwsXboU58+fB8B4abK+PwCsW7cOJiYmABgvTbR161aMHj0av/zlLyGTybBnzx7s378flpaWjNcTYhKFNEJHRwcAqH0RBIAxY8ags7NzJIZEj3H//v0B4wT03qCUsRxZV69eRXR0NPz8/ODl5TVgvPqOHzx4gI6Ojn71AOM1HIKCgnDy5En4+/sjLCwMpaWlvL40UExMDBQKRb+/lgP8PNQ03d3duHHjBtra2vDWW28hLS0NTk5OCA0NRX5+PuOlYX744QcAQGRkJPz9/fHRRx/Bw8MDGzZsYLw03LFjx2BoaIhly5ZJZYyX5qmuroahoSFSUlKQlZWFxYsXIzw8HOXl5YzXE9L5702Inr2xY8cC6P1S1/dvoPci1tPTG6lh0QDGjh2LBw8eqJX1fZjq6+szliPo3LlzCA8Ph7OzM+Lj4wH0/rJ7NF59x3p6egPGE2C8hoOVlRUAIDY2FiUlJcjIyOD1pWFOnTqFoqIi5OTkDFjPeGkWHR0dXL58GaNGjZLm28HBAVVVVTh06BDjpWFGjx4NAAgJCcGiRYsAAHZ2digrK8Phw4eHFK9H2zBez9apU6ewcOFCteuE8dIs9fX12LJlC44cOQIXFxcAgEwmQ3V1NZKSkvh5+IS4EoU0Qt9SscbGRrXyxsZGmJubj8SQ6DEsLCwGjBMAmJubM5YjJCMjA2+99Ra8vb2Rmpoq/TVh0qRJA8ZCX18fhoaGsLCwQGtra79fpIzXs9HS0oLc3Fx0d3dLZdra2rCyskJjYyOvLw1z8uRJ3L17F15eXlAoFFAoFACAHTt2YPXq1YyXBjIwMFD7Dz8A/OIXv0BDQwPjpWH65rTvHlF9rKyscOvWLcZLQ12/fh3ffPNNv9V5jJdmKSkpQVdXl9o98wDA0dERdXV1jNcTYhKFNIKtrS3GjRuHy5cvS2Xt7e0oKyuDq6vrCI6MHuXq6ori4mKoVCqprKCgAFOmTIGZmRljOQKOHTuGP/zhD1ixYgUSExPVll66uLjgypUrau0LCgrg7OwMbW1tTJ8+HT09PdINZoHefeoNDQ2M1zPQ3NwMpVKJ/Px8qayrqwtlZWWYOnUqry8NEx8fj88++wynTp2SfgBg06ZNiI2NZbw0TFVVFZydndXmGwCuXbsGKysrxkvD2Nvbw8DAACUlJWrllZWVsLS0hKurK8rKyqRtP0BvvAwMDGBrawszMzNMmTJFLV7d3d0oKipivJ6hoqIi6Xp5GOOlWfrud1JRUaFWXllZiVdeeYWfh09qpB8PRNQnMTFRuLm5iXPnzqk9i/zBgwcjPbQXWmRkpNojjpubm4Wrq6uIjIwUVVVV4uTJk0Imk4ns7GypDWM5fG7cuCHs7e1FWFiYaGxsVPtpb28XlZWVwt7eXuzevVtUV1eLQ4cOiWnTpolLly5J76FUKoWPj48oKCgQJSUlYuHChWoxp6dr9erVws/PT1y5ckVUVFQIpVIpXF1dxe3bt3l9PQcefsQx46VZVCqVWLJkiViwYIEoLCwU1dXV4v333xcODg6ioqKC8dJAKSkpQqFQiJycHFFXVycOHDggbG1tRUFBgbh//77w9fUVISEhory8XHz++efCzc1NJCUlSa/PysoScrlcZGdni6qqKvHOO++IGTNmiLt3747gWf1vi46OFsHBwf3KGS/NolKpxOuvvy7mzZsn8vPzRU1NjdizZ4+ws7MT//nPf/h5+ISYRCGN0d3dLXbt2iXc3d2Fk5OTWLNmjfjmm29GelgvvEeTKEIIUVJSIl577TXh4OAgvL29xccff6xWz1gOnw8//FBYW1sP+BMZGSmEEOLChQvC399fODg4iHnz5onc3Fy197h3757YunWrcHFxES4uLkKpVIqWlpaROJ0XQnt7u9ixY4fw8PAQcrlcrFq1SlRWVkr1vL4028NJFCEYL03T1NQkoqKihIeHh5DJZGLZsmWisLBQqme8NM9HH30kfHx8hL29vQgMDBSff/65VFdbWyvefPNNIZPJxOzZs8XevXuFSqVSe316erqYO3eukMvl4te//rUoKysb7lN4oaxevVq8/fbbA9YxXpqltbVVxMTECC8vL6FQKMSyZcvE5cuXpXp+Hv7/aQkhxEivhiEiIiIiIiIi0nS8JwoRERERERER0SAwiUJERERERERENAhMohARERERERERDQKTKEREREREREREg8AkChERERERERHRIDCJQkREREREREQ0CEyiEBEREdH/BCHESA+BiIj+xzGJQkRERM+FlStXYtq0afjqq68GrPfx8UFUVNSwjCUqKgo+Pj7D0tdQdHd3IyoqCgqFAs7OzigoKBiwnY2NDZKSkp5q39nZ2bCxscGtW7ce2+bWrVuwsbFBdnb2U+0bAIqLixEaGvrU35eIiOhhTKIQERHRc0OlUiE6OhoPHjwY6aFopH/961/49NNPERwcjD/+8Y+QyWTD1reXlxeysrIwceLEYevzYX/5y1/w9ddfj0jfRET04mAShYiIiJ4bhoaGqKqqQkpKykgPRSO1trYCABYvXgxXV1cYGBgMW9/jx4+Hk5MTdHV1h61PIiKi4cYkChERET037OzssHDhQqSnp+PatWs/2XagLStJSUmwsbGRjqOiohASEoKsrCz4+vpCLpdj+fLlqKmpQV5eHgICAuDo6IilS5eivLy8Xx9ZWVnw8vKCXC5HUFAQysrK1Oq//fZbKJVKuLm5wdHRsV+bvu0thw8fxrx58+Do6IiTJ08OeD4qlQqZmZkICAiAXC6Hl5cX4uPj0dnZKZ1L33YmX19frFy58ifn52E+Pj7Yv38/du7ciVmzZkEulyMkJAS1tbVq7S5cuIDly5fDyckJs2fPxvbt29He3g5g4O08Z8+eRWBgIORyORYtWoTr16/367u1tRXbt2/HrFmzIJPJ8NprryE/P1+tjY2NDTIzM7F161a4ublBoVDgt7/9LZqbm6Vz//TTT3H79m217UJ/+9vfpP7d3d0RHh6OhoaGQc8LERHRo5hEISIioufK7373O5iamj61bT1ffPEFMjIyEBUVhbi4OHz99dcIDQ1FXFwc1q5di8TERNTX1yM8PFztdXfu3EFycjLefvttJCYmoq2tDStXrsS3334LAGhpacHy5ctRWlqKbdu2ISEhAT09PVixYkW/bSdJSUlYs2YNdu3aBQ8PjwHHuX37dsTFxcHX1xcffvghVqxYgYyMDGzYsAFCCGzYsAHr168HACQnJ2PHjh1DmoejR4/ixo0biIuLw3vvvYdr164hMjJSqs/Ly8PatWthZmaGvXv3Ijw8HOfOncPmzZsHfL/z589j06ZNsLGxQUpKCubPn4933nlHrU1nZyeCgoLwj3/8A5s3b0ZycjIsLCywevXqfomUPXv2oKenB4mJiYiIiEBeXh7ef/99AMCGDRvg6emJCRMmSImt4uJiREREwM/PDwcPHkR0dDQKCgqwZcuWIc0LERHRw3RGegBEREREQ2FsbIzf//73WL9+PVJSUh77JX6w7t27h71792Lq1KkAgCtXruD48eM4cuQIZs6cCQCoq6vDzp070d7eDiMjIwC9K0NSUlIgl8sBAI6OjvD19cXHH3+MyMhI/OlPf0Jrayv+/Oc/Y/LkyQCAuXPnYsGCBdi3bx/2798vjWH+/PlYsmTJY8dYXV2NEydOYMuWLdLNUz08PDBx4kRERETg4sWL8PT0hKWlJYDeFTs/+9nPhjQPRkZGOHDgAEaNGgUAuHnzJpKSkvDdd9/B1NQUSUlJsLOzQ3JyMrS0tAAAurq62Ldvn7Qi5GF9c7N7924AwJw5cwAACQkJUpvTp0/j+vXr+OSTT+Do6CjN0cqVKxEfH6+2Ksfa2hpxcXHS8Zdffom///3vAABLS0uMHz8eurq6cHJyAgCcOHECY8eORWhoqLTFyMTEBF999RWEENI5EBERDQVXohAREdFzx8fHB4GBgUhPT0dpaekTvZexsbGUQAGAl156CQCkL/VA75dvANLWFQB4+eWXpQQKAEyYMAFOTk4oLCwEAOTn58POzg7m5ubo7u5Gd3c3tLW1MXfuXFy6dEltDHZ2dj85xitXrgAAXn31VbXyV199FaNGjcLly5cHe7qPJZPJpAQKAFhYWAAAOjo6cP/+fZSVlcHX11ct+bBgwQKcOXNGmrM+9+/fR2lpKby9vdXK58+fr3acn5+PCRMmwN7eXpojlUoFb29vXLt2DW1tbVLbvuTIw+Pr6Oh47Pm4urqio6MD/v7+SEhIQFFREWbPno2NGzcygUJERP9vXIlCREREz6V3330X+fn5iI6Ofux9RAZj3LhxA5br6+v/5OseTRwAgJmZGerr6wH03uujrq4O9vb2A77+4QTAf+urL5kwYcIEtXIdHR2Ympri+++//8nXD4aenp7asbZ279/aenp60NbWBiEEzMzMBvVefe1NTU3Vyh99ck9rayuampoeO0dNTU0wNjZ+7PiEEI8dg0KhQFpaGo4cOYLDhw8jLS0NL730EtatWzek+8UQERE9jEkUIiIiei4ZGxsjJiYGYWFhOHDgwIBtVCqV2vGPP/741Pp/eJVEn6amJowfPx5A75OE3NzcEBERMeDrh/IUm75EQlNTk7Q1CAC6urqk7TbP0rhx46ClpYWWlha18s7OThQUFKit2gF6V+5oa2v32+bT9/SgPoaGhnjllVcQHx8/YL9D3ZL0qDlz5mDOnDno6OhAQUEBjh49ivfeew+Ojo5qq4iIiIgGi9t5iIiI6Lnl6+sLf39/pKWl9fuCP27cuH5PYrl69epT67umpgY3b96Ujuvr6/HFF19gxowZAAA3NzfU1NRgypQpkMlk0s/p06dx4sQJta0z/42bmxsAIDc3V608NzcXKpUK06dPfwpn9HgGBgaws7NDXl6eWvnFixcRGhqKxsZGtfIxY8ZAoVDg7NmzaqtFzp8/r9bOzc0N9fX1MDMzU5ujf//730hPTx/SHPWtnOmzc+dOLFmyBEII6OnpwdvbW7pRbt/Nf4mIiIaKK1GIiIjoubZt2zYUFBT0W/Xg5eWF3NxcODo64uc//zmys7NRV1f31PodM2YM1q9fj82bN0OlUmHfvn0wMTFBUFAQACA4OBinT59GcHAwVq1aBVNTU3z22Wf45JNPEB0dPaS+rKyssGjRIuzfvx8dHR1wdXVFeXk5kpOTMWPGDOmmrc/Spk2bsH79eiiVSixcuBDNzc1ITEyEr68vrK2t+z1yWqlUIigoCBs3bsSyZctQU1OD1NRUtTaLFy9GRkYG3nzzTaxbtw6TJk3CpUuXcPDgQfzmN7/B6NGjBz0+IyMjNDc348KFC7Czs4O7uzsOHz6MqKgoBAYGoqurC+np6TAxMYG7u/tTmRMiInrxcCUKERERPddMTEwQExPTrzw6Ohre3t7YuXMnNm3aBH19/af6eNtp06Zh6dKliImJQUREBCwtLXHs2DFpO4+5uTmOHz+OyZMnIyYmBuvWrcOXX36J2NhYBAcHD7m/2NhYhIWFIScnB6GhocjMzMQbb7yBgwcP9luF8Sx4e3sjNTUVN2/eRFhYGPbt24eAgADp6TuPcnFxwcGDB9HQ0ICNGzciKytLeiRxH319fWRmZmL69OnYvXs31qxZg7Nnz2LLli1DTjQtXrwYkydPRlhYGE6dOgVPT0/Ex8ejqqoKGzduhFKphJ6eHo4ePSrdKJiIiGiotMRP3ZGLiIiIiIiIiIgAcCUKEREREREREdGgMIlCRERERERERDQITKIQEREREREREQ0CkyhERERERERERIPAJAoRERERERER0SAwiUJERERERERENAhMohARERERERERDQKTKEREREREREREg8AkChERERERERHRIDCJQkREREREREQ0CEyiEBERERERERENApMoRERERERERESD8H/gf956SaFu9wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# top 10 regions with the most number of cases\n", "top_regions = data['Region'].value_counts().nlargest(10).index\n", "\n", "# Filter the DataFrame to include only the top 10 categories\n", "data_top_regions = data[data[\"Region\"].isin(top_regions)]\n", "\n", "# Plot\n", "plt.figure(figsize=(12, 8)) # Adjust size as needed\n", "sns.countplot(\n", " y=\"Region\",\n", " data=data_top_regions,\n", " order=data_top_regions[\"Region\"].value_counts().index,\n", ")\n", "plt.title(\"Top 10 Event Regions Distribution\")\n", "plt.xlabel(\"Number of Incidents\")\n", "plt.ylabel(\"Region\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Count the occurrences of each category and select the top 10\n", "top_categories = data[\"Category\"].value_counts().nlargest(10).index\n", "\n", "# Filter the DataFrame to include only the top 10 categories\n", "data_top_categories = data[data[\"Category\"].isin(top_categories)]\n", "\n", "# Plot\n", "plt.figure(figsize=(12, 8)) # Adjust size as needed\n", "sns.countplot(\n", " y=\"Category\",\n", " data=data_top_categories,\n", " order=data_top_categories[\"Category\"].value_counts().index,\n", ")\n", "plt.title(\"Top 10 Event Categories Distribution\")\n", "plt.xlabel(\"Number of Incidents\")\n", "plt.ylabel(\"Category\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGsAAALACAYAAAAkIv+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACiZUlEQVR4nOzdeXhN17/H8c9JJJUQMUVLkBBEEMRMtAh+SM1VQwyt0FJjDa0oqlTNQ4h5bqWlhkhjqqJV0sGsNUXatGpqjTGHhJz7hyfnOk1MkcrmvF/Pk+c6e6+913efld+9N5/fWmubzGazWQAAAAAAADAEu8wuAAAAAAAAAP+PsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAMyGw221S/tsII368RagAAPBhhDQAAuK+QkBB5e3s/8Kdjx45PrZ4+ffooJCQk1fHbt28rNDRUtWrVUrly5RQUFKRffvnlgfc6efLkQ59t6dKl/9Wj3NeVK1f0/vvva/fu3Y/UfuPGjerSpYtq1Kih8uXLq3Hjxpo5c6auXbv22H1v2bJFgwYNeuzr/msBAQFpjvt/0c+94+/j46NKlSqpXbt2ioyMTNXe29tbYWFhj3z/FStWaNy4cQ9t17FjR6v/XD1uP/fzzz//6O2339apU6csx57WdwsAeDxZMrsAAABgXD169FDbtm0tn2fOnKnDhw9r+vTplmPZs2f/z+tITk7WmDFjtHHjRrVo0SLV+bFjx2rlypUaMGCA3N3dtWjRIr355puKjIyUh4fHA+/9zjvvqHbt2mmeK1SoUEaU/1iOHDmir776Sq+99toD2yUnJ+u9997T119/rddee03t2rVTtmzZtH//fi1YsECbN2/W4sWLlSNHjkfue/HixU9Y/X9j+vTpT+X3TJJq1aqlHj16SLobAsbHx2vDhg0aNGiQjhw5osGDB1vafvnll3rppZce+d6zZs1SlSpVHtpu+PDhj1/4I/jxxx/1/fffWx17mt8tAODREdYAAID7Kly4sAoXLmz5nDt3bjk6Oqp8+fJPrYaYmBiNGjVKBw4cUNasWVOd//vvv7V06VINGTJEQUFBkqSaNWuqQYMGmjdvnkaNGvXA+xcuXPipPk9GmT9/vtauXavp06erfv36luPVq1dXlSpV1L59e82YMcMqXHhWlSpV6qn1lTt37lS/D/Xr15ebm5sWL16s//3vf6pYsaIk/We/N8WKFftP7puWp/ndAgAeHcugAADAE/vhhx8UFBSkihUrqmrVqhowYID+/vtvy/mIiAh5e3vrl19+UYsWLVS2bFk1adJEX3/99UPvPWjQIN25c0dffvml8uTJk+r8Tz/9pNu3b1sFFo6Ojqpdu3aqWQTpcevWLVWsWDHV8pXbt2+rWrVqVmHQihUr9Oqrr6pMmTKqXbu2wsLCdOfOHcv5kJAQvfnmm1q1apUaNGigMmXKqFmzZtq2bZskaceOHerUqZMkqVOnTvddYpaUlKSFCxfqlVdesXruFBUrVlSfPn2s/ug/efKk3n//fdWsWVOlS5dW9erV9f777ys+Pl7S3aU3O3fu1M6dO+Xt7a0dO3ZIki5duqQPP/xQNWrUkK+vr1q3bq2ffvrJqr9r167pww8/VPXq1eXn56d+/fpp8eLF8vb2tmq3fv16tWzZUn5+fvL399eHH36oy5cvW86HhYWpfv36mj59uqpUqaKaNWvq8uXLqZbq3Lp1S+PHj1etWrVUpkwZNWnSROvXr7fq6+DBg3rjjTdUsWJF+fn56c0339T+/fvT/D4fRa9evfTCCy9o2bJllmP/Xp706aefqmHDhvL19dXLL7+sjz76yLIcLSAgQKdOndLq1avl7e2tkydPKiIiQqVKldKKFSvk7++vKlWq6Pfff0+1DCrlOx44cKD8/PxUvXp1jRo1SgkJCZbzaS1nSvnPXUpfKcFd3bp1LW3/fd3Vq1c1ZswY1atXT76+vmrcuLFWrlxpdd+AgABNmzZN48aNU40aNVS2bFl16dJFx44dS/f3CwCwRlgDAACeSGRkpIKDg5U/f35NnjxZgwcP1r59+9SmTRtduHDBqm23bt1Ut25dTZ8+XUWKFNG777770EBl/PjxWrp0qUqWLJnm+bi4OGXLlk1ubm5Wxz08PHT27Fldv379gfdPTk7W7du3U/2khCwvvPCCGjRooA0bNlhtzPrDDz8oPj5ezZo1kyTNmTNHw4YNU/Xq1TV79my1b99e8+bN07Bhw6z6O3jwoBYsWKA+ffpoxowZsre3V+/evXX58mWVLl1aH374oSTpww8/vO9ymEOHDik+Pl516tS573P16NFDr7/+uiQpISFBnTp1UlxcnIYPH64FCxaoU6dOWrdunaZMmSLp7tKbUqVKqVSpUvryyy9VunRp3bp1S2+88Ya2bNmifv36afr06XrppZfUtWtXq8CmR48e2rBhg3r37q0pU6bo+vXrmjRpklU9M2fOVP/+/VW+fHlNmzZNPXv21MaNG9WxY0fdvHnT0u706dP6/vvvNWXKFA0ePFiurq5W9zGbzerZs6eWLVumzp07a9asWZaAKGVfmWvXrqlr167KlSuXwsLCNGXKFCUkJKhLly66evXqfb+zB3FxcVHZsmW1Z8+eNM+vXbtWEyZMUPv27bVgwQL17NlTX331lT7++GNJd5cbubm5qVatWvryyy+VL18+SdKdO3e0cOFCffLJJxo8eLC8vLzSvP+SJUt0/fp1hYaGqlu3blqxYoUGDhz4yPXXrl1b77zzjqWWlKVe97p586aCgoK0Zs0ade3aVTNnzlTFihU1ZMgQzZ4926rtZ599pj/++ENjxozRqFGjdPDgQUPudwQAzyqWQQEAgHRLTk7WxIkTVbNmTas/zitUqKDAwEAtWLBA77//vuV4x44d1bNnT0nSyy+/rBYtWmjGjBmqVavWffv49+yMf7t69Wqae25ky5ZN0t0/3FP+nZYhQ4ZoyJAhqY47Oztr3759kqRmzZpp1apV2rNnjypVqiRJWrdunYoWLSpfX19dvXpVM2fOVJs2bTR06FBJd5di5cyZU0OHDlXnzp1VvHhxS70RERGW5WXOzs7q0KGDfv75ZzVo0MAyG6ZYsWL3XQ6TMmupYMGCD/xuUhw7dkwvvfSSxo0bZ9mHp1q1avrll1+0c+dOS38p32PK8p7ly5crJiZGy5cvV7ly5SRJr7zyijp27KiJEydq1apV+umnn7Rjxw6FhYXpf//7n6VN48aNFRcXJ0m6fPmyZs2apdatW1vCKEkqUaKE2rdvr1WrVql9+/aS7s5YGjRokOV7/rcff/xR27dv15QpUxQYGCjp7u9SQkKCJk6cqMaNG+v3339XfHy8OnXqpAoVKkiSihYtqi+//FLXr1+Xi4vLI31v/5Y3b179+uuvaZ7buXOnChYsqPbt28vOzk5VqlSRs7OzZeZQqVKl5OjomOYyq+7du99336QUXl5emjFjhuzs7FSrVi2ZTCaNHj1asbGxKlGixENrz507t+V3zsfHJ83fnYiICMXGxmrZsmXy8/OTdPe7vX37tmbOnKm2bdsqZ86ckqQcOXJo5syZsre3lyQdP35cYWFhio+PV65cuR5aDwDgwZhZAwAA0u3PP//UuXPn1LhxY6vjhQsXlp+fnyUISHHv5sAmk0n169fXr7/+ajWz4nE97DXEdnYP/n93evXqpZUrV6b6+fzzzy1tqlSpogIFCmjdunWS7i7D2bx5s2VWzb59+3Tz5k0FBARYzc4JCAiQdHcWTop7/2iWZNmg9t4lLQ+TJcvd/74tOTn5kdr7+Pjoiy++kLu7u44dO6bvv/9eCxYs0B9//KHExMT7XvfTTz/Jzc1NpUuXtppxVKdOHR08eFCXL1/Wzz//LAcHB9WrV89ynZ2dnSVIkaT9+/crMTEx1e9JpUqV5O7unur3xMfH54E1mUwm1apVK9V3fe7cOf32228qXry4cufOre7du+vDDz/Upk2blDdvXr333nuPtSHwv5nNZplMpjTPVatWTX/++adatmyp6dOn68CBA2rSpMkjvS3tQc+bomHDhla/yynB2K5dux6x+ofbuXOn3N3dLUFNiqZNm+rWrVtWb1jz9fW1BDVS+n6PAQD3x8waAACQbpcuXZJ0d8bBv+XNm1eHDx+2Opay9CNFnjx5ZDabdeXKlTQ3D34U2bNnT3OpU8peIQ+bReHu7i5fX98HtjGZTGrSpIlWrFihoUOH6rvvvtONGzfUpEkTSf//Pbz99ttpXn/27FnLv52cnFLdW3r04EWSChQoIElWr2D+t4sXLyp79uxydHSUJC1atEizZ8/WpUuXlDdvXpUpU0ZOTk4PXBZ06dIlnTt3TqVLl07z/Llz5xQfH6+cOXOmCsXu3V8oZXbJ/X5P/l3Dg2ZCXbp0SWaz2TJj5t/Onj0rHx8fff7555o1a5Y2bNigL7/8UlmzZlWzZs00dOhQy3fyuM6cOXPfsCcwMFDJycn64osvNHPmTIWFhcnd3V0DBw60Cq7S4uzs/NC+/73ML+X7vXLlyiNW/3CXL19O1Y/0/+N2b1///j1OGf/H+T0GANwfYQ0AAEi3lCUR58+fT3Xu3LlzqZZDpAQFKc6fPy97e3vLfdKjaNGiunbtmi5evKjcuXNbjv/1119yd3dPdwj0b82aNdOcOXO0Y8cOrV+/XpUrV5a7u7skWV6PPXHiRHl6eqa6Nq2Q4kn4+Pgob9682rZtm2X50L8NHTpU+/fv19atW7Vx40aNHTtW7733nlq2bGn5nvr27asDBw7ctx8XFxd5enpq4sSJaZ4vWLCgXnzxRcXHxys5OdkqsLl3v6KUfWfOnz+vokWLWt3j3Llzj/WKdBcXFzk7O+uzzz5L83zKq9qLFi2qCRMm6M6dO/r111/11VdfaenSpSpcuLC6du36yP2luHz5sg4dOmSZTZWWxo0bq3Hjxrp69aqio6M1b948vffee6pYsaJefPHFx+7zXimBYIpz585Jsg7F7t3MWpJu3LjxWH24urrqr7/+SnU8pS+WNwHA08MyKAAAkG5FihSRm5ub1q5da3X8xIkT2r9/f6rZD5s3b7b822w265tvvlHFihXTPdNBkmrUqCFJVm+WSkxM1NatW+Xv75/u+/6bl5eXSpcurXXr1un7779X06ZNLefKlSsnBwcHnTlzRr6+vpafLFmyaPLkyTp58uQj93Pv0pL7sbOz05tvvqmtW7fq22+/TXX+559/1vfff6+GDRvK0dFRe/bsUY4cOdS1a1dLUHP9+nXt2bPHaibEv2fHVKlSRX///bfy5Mlj9Vw//PCD5s+fL3t7e1WpUkW3b9+2qsNsNluNdbly5eTo6Jjq92T37t06ffr0fWfJpKVKlSq6ceOGzGazVU2xsbGaMWOGbt++ra+//lrVqlXTuXPnZG9vLz8/P3300UfKkSOHTp8+/ch93Wv27NlKSkpSmzZt0jz/7rvvWvZjcnFxUaNGjdSjRw/dvn3bMrPqYUvyHiTljWEp1q1bJ5PJpCpVqki6O8Psn3/+sWrz782QH9Z/5cqVderUKcteTSmioqLk4OCgsmXLprd8AMBjYmYNAABINzs7O/Xv31+DBw/WgAED1LRpU8XHx2v69OlydXVV586drdqPHz9et27dUpEiRbRixQrFxcXp008/faIa3N3d1aJFC40ZM0a3bt2Sp6enFi1apCtXrjzSDIrjx4/f95XOrq6uKlKkiOVzs2bNNG7cOGXJkkUNGza0HM+VK5e6du2qqVOn6tq1a6patarOnDmjqVOnymQy3fdNVmlJWba1detWubq63vfaN998U7t27VLv3r3VunVr1apVS3Z2dtq1a5eWLFkiHx8fDRgwQJJUtmxZLV26VGPHjlWdOnV09uxZLViwQOfPn7d621KOHDm0b98+/fTTTypVqpRatmyp8PBwde7cWd27d1f+/Pn1448/at68eerQoYMcHBxUuXJl+fv7a8iQITp//rwKFCiglStX6ujRo5YlXjlz5tTbb7+tGTNmyMHBQXXq1NHJkyc1depUFStWzGovo4epVauWKleurB49eqhHjx7y8vLSr7/+qmnTpunll19W7ty5VaFCBSUnJ6tnz556++23lS1bNm3YsEFXr1617PVyPxcvXrT8Pty5c0cXLlzQxo0btXbtWnXv3v2+S+aqVaum4cOHa9y4cXrllVd05coVTZ8+XZ6enpYxzJEjhw4fPqydO3c+dvBx4MABDRkyRI0bN9aBAwc0bdo0tWrVyjKTq06dOpozZ47mzJmjcuXK6dtvv9XPP/9sdY+UGWCbNm3SK6+8kurNUy1bttQXX3yhnj17qk+fPipYsKC+/fZbrVq1Sr169bJcDwD47xHWAACAJ9KyZUtly5ZNc+bMUc+ePZU9e3a9/PLL6t+/f6r9Lz766CPNmTNHJ06cUKlSpbRw4cL7vvXncYwcOVI5cuTQvHnzdOPGDZUuXVqLFi2yLIl5kFmzZmnWrFlpnqtbt65mzpxp+dy4cWONHz9ederUSbUXzrvvvis3Nzd98cUXmj9/vlxdXVW9enX179//sd4+VLx4cTVu3Fiff/65tm/fnmo2SgoHBwfNnDlTX375pb766iutX79eiYmJKlSokHr06KEOHTpY9kJp0aKFTp48qVWrVumLL77Qiy++qFq1aikoKEjDhg1TXFycvLy81L59ex08eFBvvfWWxowZoyZNmujzzz/XpEmTNGHCBF29elXu7u4aMGCAgoODLbVMmTJFY8eO1aRJk3T79m3VrVtX7dq1s7xKW5J69+6tvHnzKjw8XF9++aVy5syphg0b6t13332kPVtS2NnZae7cuZo6darmzJmjCxcu6MUXX1Tnzp0tM1vy5cun+fPna+rUqRoyZIgSEhJUvHhxhYWFqVq1ag+8//fff295nbzJZFKOHDlUqlQpTZs2TQ0aNLjvdW3btlVSUpKWLVumL774QlmzZlX16tX13nvvycHBQZIUHBys0aNHq0uXLlq0aNEjP7Mk9ezZUwcPHlT37t3l4uKirl27qlevXpbz3bp108WLF7VgwQIlJSWpdu3a+uSTTyyv65akqlWrqkaNGpo0aZJ++uknzZ0716oPJycnLVmyRJMmTbIEj0WLFtUnn3yiVq1aPVa9AIAnYzI/7BUKAAAATygiIkKDBw/Wli1bHvl103g2nDp1Svv371fdunWt9gfq06ePTpw4odWrV2didQAAPJuYWQMAAIB0s7OzU0hIiOrWratWrVrJ3t5e27dv1zfffKMxY8ZkdnkAADyTCGsAAACQbvnz59e8efM0Y8YMvfvuu7p9+7a8vLw0ceJENW7cOLPLAwDgmcQyKAAAAAAAAAPh1d0AAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABsIGw7BZ+/btk9lsloODQ2aXAgAAAACwAUlJSTKZTPLz83tgO2bWwGaZzWbLD2yD2WxWYmIiY24jGG/bw5jbHsbc9jDmtoXxtj22MOaP+jcoM2tgsxwcHJSYmKhixYrJ2dk5s8vBU3Djxg0dOXKEMbcRjLftYcxtD2Nuexhz28J42x5bGPMDBw48Ujtm1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENbJ7JZMrsEvCUmEwmOTk5MeY2gvG2PYy57WHMbQ9jblsYb9vDmP8/k/l53mYZeICUjZ18fX0zuRIAAAAAQHolJ5tlZ/dsBDyP+ncob4OCzZux9AedOns5s8sAAAAAADwm93yu6tnOP7PLyHCENbB5p85e1rFT8ZldBgAAAAAAktizBgAAAAAAwFAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhr7iMgIEDe3t6Wn5IlS6pChQrq0KGDdu3a9cT337Nnj3bv3v3QdqtXr1ZQUJAqVaqkSpUqqV27dtq4ceMT958ZfvvtN23dutXy2dvbWxEREZlXEAAAAAAABkRY8wDBwcGKjo5WdHS0tm3bpmXLlil79uzq2rWrTp8+/UT3DgoK0vHjx+973mw2q2/fvho7dqwCAwO1bNkyffnll3rllVfUr18/zZ0794n6zwzdunXTgQMHLJ+jo6MVGBiYiRUBAAAAAGA8WTK7ACNzdnaWm5ub5XO+fPk0YsQIvfLKK9q0aZPeeOON/6zvL774Qps2bdKKFStUunRpy/F33nlHd+7c0bRp09S4cWMVKFDgP6vhv3bvdwsAAAAAAO5iZs1jypLlbr7l6OgoSbp586ZCQ0NVt25d+fr6qlmzZlbLlCIiIlS/fn2NGjVKFStWVI8ePeTt7S1JGjx4sEJCQtLsZ9myZapdu7ZVUJPijTfe0OLFi5U3b97HqiHlf5YpU0YtW7bUnj17LG0SEhI0fPhwVa1aVRUqVNCQIUM0YMAAq/r27t2r9u3bq2zZsqpdu7ZGjBiha9euWc7/+uuvCgoKkp+fnypXrqzevXtbZiAFBATo1KlTmj59ujp27Cgp9TKoyMhINW3aVGXLllVAQIBmzpypO3fuSJJOnjwpb29vbdy4Ua+//rrKlCmjgIAAffnllw8dMwAAAAAAniWENY/hzJkzGjlypJydnVWrVi1JUv/+/RUZGalhw4YpKipK9erVU9++fbV582bLdcePH9fZs2cVGRmpfv36KTo6WpL0wQcfaMiQIan6uXXrlmJjY1WhQoU063BxcVGlSpUsgdGj1PD3339r2bJlmjBhglavXi0nJyeFhITIbDZLkgYNGqQffvhBU6ZM0bJly3T16lWtW7fOcn1MTIw6d+6sl19+WVFRUZo4caIOHTqk4OBgmc1m3blzR926dVPlypUVFRWlxYsX6/Tp0/rggw8kSStXrtRLL72k4OBghYWFpXqmxYsXa9iwYWrTpo2ioqLUt29fLViwQGPHjrVqN2bMGHXv3l0bNmxQ7dq19dFHH+nEiRMPHzwAAAAAAJ4RLIN6gDlz5mjhwoWSpNu3bysxMVFeXl4KDQ1VgQIFFBcXpy1btmj27NmqXbu2JKl3796KiYnR7NmzVa9ePcu9evTooUKFClnd38XFRS4uLqn6vXz5siTJ1dX1oTU+ag1JSUkaMWKEfHx8JEmdO3dWz549de7cOd26dUsbN27U/PnzVaNGDUnShAkTtHfvXks/CxYskL+/v7p37y5J8vT01KRJk1SvXj3t3LlTJUuWVHx8vPLlyyd3d3cVKlRIoaGhunDhgiQpd+7csre3l7Ozs3LmzGn1DGazWfPmzVOHDh3Uvn17y/0vXbqkCRMmqE+fPpa2b775purWrStJ6tevnz7//HP98ssvqb5bAAAAAACeVYQ1D9C2bVvLkh07OzvlzJnTKlw5evSoJKlixYpW11WuXFmTJ0+2Oubp6fnI/ebMmVMmk0nx8fEPbfs4NXh5eVn+nfIcSUlJOnz4sCTJz8/Pcv6FF15Q2bJlLZ8PHz6sv/76y6pNiri4OFWtWlVdu3bVxx9/rGnTpqlatWqqVauWGjVq9NBnuHjxos6fP5/qGapUqaKkpCT98ccfypMnzwOfAQAAAACA5wVhzQO4urrKw8Pjsa8zm82WvW1SZM2a9ZGvd3R0VJkyZaxmttzrypUr6tWrl3r16vVYNaQsm/p3O3t7e0lScnLyfe+XnJysJk2aWGbW3Ct37tySpIEDByooKEjff/+9fvrpJ3388ceaP3++IiMj0+z73hru16ckq+e43zMAAAAAAPC8YM+aJ5CyUfC9G/VK0u7du1WsWLEnunfr1q21bds2HTp0KNW5zz77TLt371bBggUzpAZvb2+ZTCbt37/fciwxMdGq7+LFi+v333+Xh4eH5ef27dsaM2aM/v77b/3xxx8aPny48uTJo3bt2mnatGmaP3++4uLiFBMT88D+8+bNq7x586b5DA4ODipcuPAjPQcAAAAAAM8DZtY8AS8vL9WpU0cjRoyQyWSSh4eH1q1bpy1btig0NPSB1zo7OysuLk7x8fHKlStXqvOtWrXSli1b1LlzZ/Xt21f+/v66efOmoqKitGjRIg0aNMjy2u701pCiUKFCatSokT7++GONHDlSbm5umjNnjv755x+ZTCZJUnBwsNq3b68RI0aoQ4cOunLlikaMGKGbN2/K09NT169f17p163Tz5k29/fbbsrOz0+rVq+Xq6qqiRYtKkrJly6Zjx47p/PnzljdZpejSpYumTJmiQoUKyd/fX7/++qumT5+uNm3ayMXFxbKPDwAAAAAAzzvCmic0efJkTZ48WUOGDNGVK1dUokQJhYWFqX79+g+8Ljg42DLzZPbs2anO29nZacaMGQoPD9eKFSs0adIkZcmSRcWLF9f06dMtm+w+SQ33+vjjjzVq1Cj17t1bZrNZTZo0kZ+fnxwcHCRJ5cuX1/z58zV16lS1aNFCzs7Oql69ugYNGiRHR0c5Ojpq3rx5mjRpklq3bq07d+6ofPnyWrRokbJnzy5J6tixo8aNG6fffvtNUVFRqb4PR0dHffrppxo9erReeuklvfXWW+rSpcsjPwMAAAAAAM8Dk5kNP2zerVu3tH37dlWrVs0SrEhSgwYN1LRpU/Xs2TMTq/vvHDhwQJK09NsTOnbq4Zs5AwAAAACMxdM9l0b3DczsMh5Zyt+hvr6+D2zHzBrI0dFRI0aMUJUqVdSjRw/Z29tr5cqVOn36tBo2bJjZ5QEAAAAAYFPYYBgymUyaO3eu4uPj1aZNG7Vo0UL79u3TwoULrV6VDQAAAAAA/nvMrIEkycfHRwsXLszsMgAAAAAAsHnMrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADyZLZBQCZzT2fa2aXAAAAAABIh+f17znCGti8nu38M7sEAAAAAEA6JSebZWdnyuwyMhTLoGDTEhMTlZCQkNll4ClJSEjQ4cOHGXMbwXjbHsbc9jDmtocxty2Mt+1J75g/b0GNRFgDyGw2Z3YJeErMZrMSEhIYcxvBeNsextz2MOa2hzG3LYy37WHM/x9hDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ1snslkyuwS8JSYTCY5OTkx5jaC8bY9jLntYcxtD2MOwFZkyewCgMzk6OgoJyenzC4DT4mTk5NKlSqV2WXgKWG8bQ9jbnsYc9uT3jFPTjbLzo6AB8Czg7AGNm/G0h906uzlzC4DAAAA/wH3fK7q2c4/s8sAgMdCWAObd+rsZR07FZ/ZZQAAAAAAIIk9awAAAAAAAAyFsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrnkBAQIC8vb0tPyVLllSFChXUoUMH7dq164nvv2fPHu3evfu+5zt27GjVf+nSpVWzZk0NHDhQJ0+eTFVrWFjYE9f0JJKSkrR48WLL57CwMAUEBGReQQAAAAAAGBBhzRMKDg5WdHS0oqOjtW3bNi1btkzZs2dX165ddfr06Se6d1BQkI4fP/7ANo0aNbL0v3HjRk2YMEHHjx9X27ZtrfpfuXKlgoODn6ieJ7V27VqNGTPG8jk4OFgrV67MxIoAAAAAADAewpon5OzsLDc3N7m5uSlfvnwqUaKERowYoZs3b2rTpk3/ef9Zs2a19F+wYEFVr15dCxYskL29vSZPnmxplzt3bmXLlu0/r+dBzGaz1eds2bIpd+7cmVQNAAAAAADGRFjzH8iSJYskydHRUZJ08+ZNhYaGqm7duvL19VWzZs20ceNGS/uIiAjVr19fo0aNUsWKFdWjRw95e3tLkgYPHqyQkJDH6t/FxUUtW7bUpk2blJiYKMl6GVRCQoKGDBkif39/+fr6qnnz5vrmm28s13fs2FHDhg3T66+/rkqVKikqKkohISHq2LGjVT/3Hjt58qS8vb0VGRmpxo0bq2zZsmrdurX27NljecbBgwdLkry9vbVjx45Uy6D+/vtvDRw4UP7+/ipfvry6dOmimJgYq/5CQkI0btw4Va9eXeXKlVO3bt105syZx/p+AAAAAAAwMsKaDHbmzBmNHDlSzs7OqlWrliSpf//+ioyM1LBhwxQVFaV69eqpb9++2rx5s+W648eP6+zZs4qMjFS/fv0UHR0tSfrggw80ZMiQx66jRIkSunnzpo4dO5bq3NSpU3X06FHNnTtX69ev1yuvvKJ+/fpZ7XOzYsUKderUSV988YVefvnlR+537Nix6t69u1avXq2iRYsqODhYJ06cUGBgoD744ANJUnR0tPz8/Kyuu3btmtq1a6czZ85o1qxZWrZsmbJmzaoOHTro1KlTlnZr167VpUuXFB4ernnz5unQoUMKDQ19vC8HAAAAAAADy5LZBTzr5syZo4ULF0qSbt++rcTERHl5eSk0NFQFChRQXFyctmzZotmzZ6t27dqSpN69eysmJkazZ89WvXr1LPfq0aOHChUqZHV/FxcXubi4PHZdOXLkkCRdvXo11bnjx48rW7ZsKlSokHLkyKG+ffuqcuXKcnV1tbTx8fFRkyZNHrvft99+W40bN5Ykffzxx/r555+1fPlyDRgwwPIcbm5uqa6LiopSfHy8IiIiLEujJk2apHr16unzzz/X+++/L+nu9zFy5Eg5ODjIy8tLgYGB+v777x+7TgAAAAAAjIqw5gm1bdvWshTIzs5OOXPmtApXjh49KkmqWLGi1XWVK1e22lNGkjw9PTOsrpSQJiW0uddbb72l7t27q3r16ipbtqz8/f3VpEkTq7o9PDzS1W/VqlUt/3ZwcFCZMmUUGxv70OtiY2Pl6elptYdN1qxZVbZsWavrCxcuLAcHB8tnFxcXJSUlpatWAAAAAACMiGVQT8jV1VUeHh7y8PBQoUKFHnkWjNlstuxtkyJr1qwZVtehQ4fk7OycZgDk5+en77//XtOmTVPp0qUVGRmpwMBA/fTTT49Vy+3bt1Md+/cz3blzR3Z2D/81+/fmwymSk5Ot7pmyDxAAAAAAAM8rwpr/WMpGwSkb7abYvXu3ihUr9p/0ee3aNUVGRqphw4ZWs1BSTJs2TXv27FHdunU1dOhQbdy4UYUKFbLa9PjfHBwcdO3aNatjf/31V6p2Bw4csPw7MTFRhw4dUunSpSVJJpPpvvf39vbWsWPHdOHCBcuxW7du6eDBg//Z9wQAAAAAgBER1vzHvLy8VKdOHY0YMUJbt27Vn3/+qenTp2vLli0KDg5+4LXOzs6Ki4tTfHz8fdvcvHlT586d07lz53T69GlFR0fr7bffltls1rvvvpvmNSdOnNDw4cP1008/6dSpU9q4caNOnz6datPfe5UvX14xMTGKiorSiRMnNGPGjDSXN4WGhmrr1q36/fff9cEHHyghIUGtW7e2PI8kHTx4UDdv3rS6rkmTJsqZM6feffdd/frrr4qJidHAgQN148YNtWnT5oHfEwAAAAAAzxP2rHkKJk+erMmTJ2vIkCG6cuWKSpQoobCwMNWvX/+B1wUHB2v+/PmKi4vT7Nmz02yzYcMGbdiwQdLdJUhubm6qV6+eJk+erBdffDHNa4YPH65x48bpvffe06VLl+Tu7q6BAweqWbNm962ladOmOnLkiEaNGqXbt2+rUaNGeuONN7Rv3z6rdu3atdO4ceN0+vRplStXTkuWLFG+fPkkSdWqVVO5cuXUtm1bTZgwweo6FxcXhYeHa+zYsXrzzTcl3d3nZ+nSpak2XQYAAAAA4HlmMt9vsxDgMZw8eVJ169bVZ599ZrXJsJGlLNla+u0JHTt1/9lLAAAAeHZ5uufS6L6BmV0G0uHGjRs6cuSIfHx8LLP08XyzhTFP+TvU19f3ge1YBgUAAAAAAGAghDUAAAAAAAAGwp41yBAFCxbU0aNHM7sMAAAAAACeecysAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAPJktkFAJnNPZ9rZpcAAACA/wj/vx6AZxFhDWxez3b+mV0CAAAA/kPJyWbZ2ZkyuwwAeGQsg4JNS0xMVEJCQmaXgackISFBhw8fZsxtBONtexhz28OY2570jjlBDYBnDWENbJ7ZbM7sEvCUmM1mJSQkMOY2gvG2PYy57WHMbQ9jDsBWENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDWyeyWTK7BLwlJhMJjk5OTHmNoLxtj2MOQAAeF5kyewCgMzk6OgoJyenzC4DT4mTk5NKlSqV2WXgKWG8bY/Rxzw52Sw7O4IkAADwcIQ1sHkzlv6gU2cvZ3YZAIDnmHs+V/Vs55/ZZQAAgGcEYQ1s3qmzl3XsVHxmlwEAAAAAgCT2rAEAAAAAADAUwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAA8mS2QXYsoCAAJ06dcry2WQyydnZWaVKlVLfvn1VuXLlJ7r/nj17ZDabValSpQe2W716tVasWKHY2FhJUvHixfXmm2+qQYMGVrW2aNFCvXv3fqKaAAAAAADAgzGzJpMFBwcrOjpa0dHR2rZtm5YtW6bs2bOra9euOn369BPdOygoSMePH7/vebPZrL59+2rs2LEKDAzUsmXL9OWXX+qVV15Rv379NHfu3CfqHwAAAAAAPD5m1mQyZ2dnubm5WT7ny5dPI0aM0CuvvKJNmzbpjTfe+M/6/uKLL7Rp0yatWLFCpUuXthx/5513dOfOHU2bNk2NGzdWgQIF/rMaAAAAAACANWbWGFCWLHczNEdHR0nSzZs3FRoaqrp168rX11fNmjXTxo0bLe0jIiJUv359jRo1ShUrVlSPHj3k7e0tSRo8eLBCQkLS7GfZsmWqXbu2VVCT4o033tDixYuVN2/eNK/dt2+fOnXqpIoVK6pq1aoaPHiw4uPjLed//fVXBQUFyc/PT5UrV1bv3r0tM4VOnjwpb29v7dixw9L+38dCQkLUp08fBQcHq0KFCpo3b54k6bvvvlPLli1VtmxZ1a9fX6GhoUpMTHy0LxYAAAAAgGcAYY3BnDlzRiNHjpSzs7Nq1aolSerfv78iIyM1bNgwRUVFqV69eurbt682b95sue748eM6e/asIiMj1a9fP0VHR0uSPvjgAw0ZMiRVP7du3VJsbKwqVKiQZh0uLi6qVKmSJTC616+//qqOHTuqePHiWr58uaZOnapffvlFXbp00Z07d3Tnzh1169ZNlStXVlRUlBYvXqzTp0/rgw8+eKzvYuPGjapRo4ZWrVqlxo0ba9u2bXr33XfVunVrrV27VsOHD9eGDRv03nvvPdZ9AQAAAAAwMpZBZbI5c+Zo4cKFkqTbt28rMTFRXl5eCg0NVYECBRQXF6ctW7Zo9uzZql27tiSpd+/eiomJ0ezZs1WvXj3LvXr06KFChQpZ3d/FxUUuLi6p+r18+bIkydXV9bFrXrhwoby9vTVs2DBJkpeXlyZPnqxmzZopOjpa5cuXV3x8vPLlyyd3d3cVKlRIoaGhunDhwmP14+rqqq5du1o+DxgwQK1bt1bbtm0lSYULF9aIESP0xhtv6OTJkypYsOBjPwsAAAAAAEZDWJPJ2rZtq44dO0qS7OzslDNnTqtw5ejRo5KkihUrWl1XuXJlTZ482eqYp6fnI/ebM2dOmUwmq6VLjyo2Nlb+/v5Wx0qWLCkXFxcdPXpUtWrVUteuXfXxxx9r2rRpqlatmmrVqqVGjRo9Vj8eHh5Wnw8fPqxff/1VK1eutBwzm82SpLi4OMIaAAAAAMBzgbAmk7m6uqYKJR6F2Wy27G2TImvWrI98vaOjo8qUKaO9e/emef7KlSvq1auXevXqpSpVqqTq+341OTg4SJIGDhyooKAgff/99/rpp5/08ccfa/78+YqMjEzz2jt37qQ69u/nSU5OVteuXdWiRYtUbe/dpBkAAAAAgGcZe9YYXMpGwXv27LE6vnv3bhUrVuyJ7t26dWtt27ZNhw4dSnXus88+0+7du9OcreLt7Z2qnpiYGF27dk1eXl76448/NHz4cOXJk0ft2rXTtGnTNH/+fMXFxSkmJsYS6Fy7ds1y/bFjxx5ab/HixfXnn3/Kw8PD8vPPP/9o/Pjxun79+mM+PQAAAAAAxsTMGoPz8vJSnTp1NGLECJlMJnl4eGjdunXasmWLQkNDH3its7Oz4uLiFB8fr1y5cqU636pVK23ZskWdO3dW37595e/vr5s3byoqKkqLFi3SoEGD0nxtd+fOnRUUFKSPP/5YQUFBOn/+vD7++GOVKlVK1atX17Vr17Ru3TrdvHlTb7/9tuzs7LR69Wq5urqqaNGiypYtm9zd3fXpp5/K09NTly5d0tSpU2UymR74PG+99ZbeffddTZ8+Xa+++qr++ecfDRkyRAULFmRmDQAAAADguUFY8wyYPHmyJk+erCFDhujKlSsqUaKEwsLCVL9+/QdeFxwcbJnRMnv27FTn7ezsNGPGDIWHh2vFihWaNGmSsmTJouLFi2v69OmqW7dumvctV66c5s+fr9DQUDVv3lzZs2dXvXr1NGDAADk4OChXrlyaN2+eJk2apNatW+vOnTsqX768Fi1apOzZs0uSxo8fr9GjR6tZs2by8PDQ4MGD9fbbbz/weRo2bKgpU6Zozpw5mj17tnLmzKmAgAANHDjwEb9JAAAAAACMz2S+3wYkwHPuwIEDkqSl357QsVOPv9EyAACPytM9l0b3DczsMp47N27c0JEjR+Tj4yNnZ+fMLgdPAWNuWxhv22MLY57yd6ivr+8D27FnDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgWTJ7AKAzOaezzWzSwAAPOf4vzUAAOBxENbA5vVs55/ZJQAAbEBysll2dqbMLgMAADwDWAYFm5aYmKiEhITMLgNPSUJCgg4fPsyY2wjG2/YYfcwJagAAwKMirIHNM5vNmV0CnhKz2ayEhATG3EYw3raHMQcAAM8LwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIa2DyTyZTZJeApMZlMcnJyYsxtBOMNAACAZ1WWzC4AyEyOjo5ycnLK7DLwlDg5OalUqVKZXQaeEsY7cyQnm2VnR0AGAADwJAhrYPNmLP1Bp85ezuwyAOCZ557PVT3b+Wd2GQAAAM88whrYvFNnL+vYqfjMLgMAAAAAAEnsWQMAAAAAAGAohDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCA2FdYEBATI29tbixYtSvP8hx9+KG9vb4WFhT1RPx07dlRISIjl83fffafff/9dkrRjxw55e3vr5MmTT9RHeixfvlze3t4aPXr0I7V/nFpPnjwpb29v7dix40nLBAAAAADAptlUWCNJDg4O2rhxY6rjt2/f1jfffCOTyfTEfYSFhWnIkCGSpFOnTql79+66cOGCJMnPz0/R0dHKnz//E/fzuCIiIlSkSBFFRkbq1q1bGXrv/PnzKzo6Wn5+fhl6XwAAAAAAbI3NhTXVq1fX/v379c8//1gd//nnn+Xs7JwhIUrOnDnl4uIiSTKbzVbnHB0d5ebmJnt7+yfu53HExcVp3759GjhwoK5cuaINGzZk6P3t7e3l5uYmR0fHDL0vAAAAAAC2xubCmrJly6pAgQL6+uuvrY6vX79ejRo1SjWzZsWKFWrSpInKli2r8uXLKygoSAcOHLCcDwgI0Lhx4xQYGKiqVatq586dlmVQJ0+eVN26dSVJnTp1UlhYWKqlRQEBAZo7d67efvttlStXTgEBAdq8ebM2b96sBg0aqHz58urSpYtlZo50N3h566235Ofnp5o1a2rAgAE6d+7cA587IiJCrq6uqlOnjipUqKBly5alarN79269/vrrKlu2rJo2baqYmBir6319fXXlyhWra+rVq6cpU6akWgZ17NgxdenSRRUrVpSfn5+6dOmio0ePWq67dOmSRowYoVq1aqls2bJq27at1RKqsLAwdejQQf369VOFChU0fPhwVa9eXdOnT7fqf9myZapZs6Zu3779wOcHAAAAAOBZYXNhjSQ1atTIKqxJTEzU5s2b9eqrr1q127Rpk0aOHKmuXbtqw4YNWrx4sW7duqWhQ4datQsPD9fQoUM1f/58lS9f3nI8f/78WrFihaS74UNwcHCa9cycOVOBgYFas2aNSpYsqffff1+zZ8/WhAkTNHv2bB04cEDz5s2TJJ05c0ZBQUHy8PDQypUrNXv2bF27dk1t2rTRjRs30rz/nTt39NVXX6levXqyt7dXYGCg9u3bZxXGnDhxQsHBwfLx8dHq1avVs2dPzZw503K+YcOGypIli9USsr179+rEiRNq2bJlqj779++vF198UatWrdKKFStkZ2enXr16WeoJDg7W7t27NWHCBEVERKhEiRLq0qWLfv31V8s9du3apbx58+qrr75S586d1bRpU0VFRVn1ExkZqaZNmypLlixpPjsAAAAAAM8amw1r9u/frzNnzkiSfvjhB+XOnVulSpWyapczZ0598sknatasmdzd3VW+fHm1atVKsbGxVu1q1aqlGjVqyNfX12oZkL29vXLnzi1JcnV1VbZs2dKsp3bt2mrevLkKFy6s1q1b6/r16+rXr5/Kli2ratWqqUaNGvrtt98kSUuXLtVLL72koUOHysvLS2XKlFFoaKguXLiQarZQim3btuncuXOWMKphw4ayt7fXl19+aWmzfPly5c2bV8OHD5eXl5caNGigd955x3Le2dlZDRs21Jo1ayzH1qxZowoVKsjDwyNVn8ePH1fu3Lnl7u6uYsWKafTo0Ro1apSSk5MVHR2tQ4cOadKkSapSpYqKFSumESNGqHjx4lqwYIHVffr06aNChQrJ09NTr732mv766y/t27dPkvTnn39q3759aYZFAAAAAAA8q2wyrClTpowKFSpkmSWyfv36VLNqJKly5coqXbq0ZsyYoQEDBqhVq1YaPXq0kpOTrdqlFVY8jnuvd3JykiQVLlzYcixr1qxKTEyUJB0+fFi//fab/Pz8LD81atTQrVu3FBcXl+b9V61apTx58qhatWqSpLx586patWqKioqyzMaJjY1VqVKlrPbSqVChgtV9WrZsqV27dunMmTNKSkrShg0b7huU9OvXT4sWLVLVqlXVvXt3ffPNNypZsqTs7OwUGxsrFxcXlShRwtLeZDKpUqVKVkFYnjx5LHv/SFKJEiXk6+uryMhISXdn1ZQtW1bFihW7zzcLAAAAAMCzx2bXjqQshWrTpo22bNliWa50rzVr1igkJERNmjRRhQoV1LZtW8XGxmrkyJFW7bJmzfpEtaS1hOd+b6VKTk5WtWrVNHz48FTn7g02Uly8eFFbt25VUlKSfH19re5jNpu1du1atW7dWiaTKVUI9e+6KlWqJHd3d61du1ZFixbVzZs31ahRozTrbN++vRo2bKjvv/9eP/30k6ZNm6ZZs2YpMjIy1abLKcxms1WfaX2vr732mqZMmaIhQ4ZozZo16tq1a5r3AgAAAADgWWWTM2uku2HN3r17tWrVKhUqVEheXl6p2sydO1etWrXS2LFj1b59e1WuXFknTpyQlPotT/eTEa8Cv1fx4sUVFxen/Pnzy8PDQx4eHnJ1ddXo0aNTLc+SpKioKCUlJWnGjBmKjIy0+smdO7dlo+GSJUvq4MGDlhk8knTw4MFUz9KiRQt98803WrdunerVq6fs2bOn6vPChQsaOXKkkpKS1LJlS02YMEFRUVE6d+6cdu7cKW9vb129etWqXrPZrD179jx0lkzjxo1169YtLVq0SOfPn1fjxo0f6/sDAAAAAMDobDas8fHxkYeHhyZNmpTmEijp7gbBe/fu1aFDh3T8+HEtXrxY4eHhkmQVajyIs7OzpLvLjK5evfrEdQcFBenq1asaOHCgYmJiFBMTo379+unAgQNWy4pSrFq1Sn5+fqpXr55KlChh+SlZsqSCgoJ06NAhHThwQO3atVNCQoI++OADxcXF6bvvvlNYWFiq+7Vo0UIHDhzQli1b7rsEytXVVVu3btXQoUN15MgRnThxQsuWLZODg4PKlCmjmjVrysfHRwMGDNDOnTsVFxenkSNHKjY2Vm+88cYDn9/FxUX169fXzJkzVbduXeXIkSN9XyQAAAAAAAZls2GNdHd2zbVr1xQYGJjm+WHDhilv3rzq0KGDXn/9dX333XcaP368JFm9vvtBcuXKpddee03jx4/X1KlTn7jmQoUKKTw8XNevX1e7du3UoUMHOTg46LPPPrNsZpzi4MGDio2NVfv27dO8V1BQkF544QUtW7ZML774oj799FP9888/atGihcaOHWu1wXCKAgUKqEqVKnJ1dbXsgfNvWbJk0bx582RnZ6c333xTr776qn788UfNnTtXhQsXlr29vRYuXKhSpUqpV69eeu211/Tbb79p8eLFVm/Tup+WLVvq5s2bbCwMAAAAAHgumcyPup4HMIiIiAiFhYVpy5YtsrNLf96YErgt/faEjp2Kz6jyAMBmebrn0ui+af8XIE/DjRs3dOTIEfn4+FhmtuL5xpjbHsbctjDetscWxjzl79B795RNi81uMIxnz6FDh/THH39o2rRp6tChwxMFNQAAAAAAGBV/7eKZsX//fg0dOlTlypV76N42AAAAAAA8q5hZg2dG+/bt77v/DgAAAAAAzwtm1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABhIlswuAMhs7vlcM7sEAHgu8L9PAQAAMgZhDWxez3b+mV0CADw3kpPNsrMzZXYZAAAAzzSWQcGmJSYmKiEhIbPLwFOSkJCgw4cPM+Y2gvHOHAQ1AAAAT46wBjbPbDZndgl4SsxmsxISEhhzG8F4AwAA4FlFWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1sHkmkymzS8BTYjKZ5OTkxJjbCMYbAAAAz6osmV0AkJkcHR3l5OSU2WXgKXFyclKpUqUyuww8JYz3/SUnm2VnR4gFAABgVIQ1sHkzlv6gU2cvZ3YZAPBUuOdzVc92/pldBgAAAB6AsAY279TZyzp2Kj6zywAAAAAAQBJ71gAAAAAAABgKYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgdhcWBMQECBvb28tWrQozfMffvihvL29FRYW9kT9dOzYUSEhIZbP3333nX7//XdJ0o4dO+Tt7a2TJ08+UR/psXz5cnl7e2v06NEZfm9vb29FRETc93xISIg6duyYoX3+9ttv2rp1a4beEwAAAACAzGRzYY0kOTg4aOPGjamO3759W998841MJtMT9xEWFqYhQ4ZIkk6dOqXu3bvrwoULkiQ/Pz9FR0crf/78T9zP44qIiFCRIkUUGRmpW7duZei9o6OjFRgYmKH3fJhu3brpwIEDT7VPAAAAAAD+SzYZ1lSvXl379+/XP//8Y3X8559/lrOzc4aEKDlz5pSLi4skyWw2W51zdHSUm5ub7O3tn7ifxxEXF6d9+/Zp4MCBunLlijZs2JCh93dzc1PWrFkz9J4AAAAAANgamwxrypYtqwIFCujrr7+2Or5+/Xo1atQo1cyaFStWqEmTJipbtqzKly+voKAgq9kcAQEBGjdunAIDA1W1alXt3LnTsgzq5MmTqlu3riSpU6dOCgsLS7UMKiAgQHPnztXbb7+tcuXKKSAgQJs3b9bmzZvVoEEDlS9fXl26dLHMzJHuBi9vvfWW/Pz8VLNmTQ0YMEDnzp174HNHRETI1dVVderUUYUKFbRs2bJUbf766y+98847qlixoqpWrar+/ftb9RsVFaWmTZuqbNmyqlu3rj799FPLuXuXQZnNZs2cOVOvvPKKypcvr8GDB6eayXPmzBn169dPlSpVUtWqVdW9e3cdO3bMcj4kJEQhISEaN26cqlevrnLlyqlbt246c+aM5Xs7deqUpk+fnuHLqwAAAAAAyCzpCmv27duX0XU8dY0aNbIKaxITE7V582a9+uqrVu02bdqkkSNHqmvXrtqwYYMWL16sW7duaejQoVbtwsPDNXToUM2fP1/ly5e3HM+fP79WrFgh6e7SqODg4DTrmTlzpgIDA7VmzRqVLFlS77//vmbPnq0JEyZo9uzZOnDggObNmyfpbsgRFBQkDw8PrVy5UrNnz9a1a9fUpk0b3bhxI83737lzR1999ZXq1asne3t7BQYGat++fYqJibG0uXLlitq3b6/ExER9+umnWrRokY4fP653331X0t0wa9CgQWrWrJmioqLUv39/TZw4Mc19aubOnav58+fr/fffV0REhHLkyKH169dbzt+4ccMSsISHh2vJkiXKlSuXWrdubQljJGnt2rW6dOmSwsPDNW/ePB06dEihoaGSpJUrV+qll15ScHDwE+8xBAAAAACAUaQrrGnXrp0aNmyoefPm6ezZsxld01PRqFEj7d+/3xIM/PDDD8qdO7dKlSpl1S5nzpz65JNP1KxZM7m7u6t8+fJq1aqVYmNjrdrVqlVLNWrUkK+vrxwdHS3H7e3tlTt3bkmSq6ursmXLlmY9tWvXVvPmzVW4cGG1bt1a169fV79+/VS2bFlVq1ZNNWrU0G+//SZJWrp0qV566SUNHTpUXl5eKlOmjEJDQ3XhwoVUs4VSbNu2TefOnbOEUQ0bNpS9vb2+/PJLS5v169fr+vXrmjx5ssqUKaNSpUpp1KhRKl++vCXACQwMVJcuXeTp6alXX31Vw4YNS7X0yWw2a8mSJerUqZMaN26sokWLavDgwfLx8bG0Wbduna5cuaIJEyaoZMmSKlGihD755BNlz55dy5cvt7RzcXHRyJEj5eXlpSpVqigwMFB79+6VJOXOnVv29vZydnZWzpw503xuAAAAAACeNVnSc1F4eLgiIyM1Z84chYaGqkaNGnrttddUt25dOTg4ZHSN/4kyZcqoUKFC2rhxozp16qT169enmlUjSZUrV1ZcXJxmzJihP/74Q3/99ZeOHj2q5ORkq3YeHh5PVM+91zs5OUmSChcubDmWNWtWy3Kkw4cP67fffpOfn5/VPW7duqW4uLg0779q1SrlyZNH1apVkyTlzZtX1apVU1RUlN577z05OzsrNjZWnp6ecnV1tVxXsmRJlSxZUpIUGxub6jtq3bp1qr7i4+N17tw5+fr6Wh0vX768pb7Dhw/r8uXLqly58gOfoXDhwla/Uy4uLkpKSkrzGQEAAAAAeB6kK6ypVKmSKlWqpGHDhumbb75RZGSkBgwYoOzZs6tx48Zq2bKlSpcundG1ZriUpVBt2rTRli1bLMuV7rVmzRqFhISoSZMmqlChgtq2bavY2FiNHDnSqt2TbqybJUvqobjfW6mSk5NVrVo1DR8+PNW5lE2N73Xx4kVt3bpVSUlJVgFKcnKyzGaz1q5dq9atW6dZw8NqTEtK3f/eWPne65OTk1WkSBHNmjUr1fXOzs6Wf987SwkAAAAAAFvwRBsMv/DCC2rSpIkWLFigNWvWqESJEvr888/VqlUrtWzZ0mqPEiNq1KiR9u7dq1WrVqlQoULy8vJK1Wbu3Llq1aqVxo4dq/bt26ty5co6ceKEpNRhxP1kxKvA71W8eHHFxcUpf/788vDwkIeHh1xdXTV69OhUy7Oku5sCJyUlacaMGYqMjLT6yZ07t2Wj4WLFiunYsWO6evWq5dpDhw6pevXq+ueff+Tl5ZXqNdljxoxRnz59rI7lypVL+fPn1549e6yOHzx40PLvEiVK6PTp03JxcbE8Q4ECBTRp0iTt2rXrib8jAAAAAACeVU8U1iQkJOirr75ScHCwmjZtqiNHjqhNmzaaOXOmfH199d5772n8+PEZVWuG8/HxkYeHhyZNmpTmEijp7gbBe/fu1aFDh3T8+HEtXrxY4eHhku5uSvwoUmaKxMbGWgUh6RUUFKSrV69q4MCBiomJUUxMjPr166cDBw6oRIkSqdqvWrVKfn5+qlevnkqUKGH5KVmypIKCgnTo0CEdOHBATZo0kaurq9577z3FxMTo4MGDGj58uEqUKKGXXnpJb7/9ttavX68lS5bo+PHjWrNmjZYuXaqAgIBUfb711lv6/PPPtWLFCv35558KDQ3Vr7/+ajnftGlTubq6qk+fPvrll18UFxenkJAQbdu2Td7e3o/8XWTLlk3Hjh3T+fPn0/dlAgAAAABgMOkKa3788UcNGjRI/v7+GjRokJKSkjRq1ChFR0drxIgRqlOnjkaMGKHXX389zddDG0mjRo107do1BQYGpnl+2LBhyps3rzp06KDXX39d3333nSWA+vcsk/vJlSuXXnvtNY0fP15Tp0594poLFSqk8PBwXb9+Xe3atVOHDh3k4OCgzz77zLKZcYqDBw8qNjZW7du3T/NeQUFBeuGFF7Rs2TI5OTlpwYIFun37ttq2bauuXbuqWLFilrcvBQQEaOTIkfr8888VGBio6dOna/DgwWrevHmq+7Zv317vvfeeZs2apWbNmum3335Tq1atLOddXFwUHh6uXLlyqUuXLmrVqpXOnDmjhQsXpjnD6X46duyorVu33vctWwAAAAAAPGtM5kddy3OPkiVLKl++fGrRooVee+01q41w77VkyRLt2rVL06ZNe+JCgYyWErYt/faEjp2Kz+RqAODp8HTPpdF90/4vKJ51N27c0JEjR+Tj42O1/xmeX4y57WHMbQvjbXtsYcxT/g799wt5/i1dGwzPmDFDNWrUsLy16H46duyojh07pqcLAAAAAAAAm5SuZVCDBg3Spk2bMroWAAAAAAAAm5eusCZHjhxP/KpqAAAAAAAApJauZVDdunXTqFGj9Oeff6pkyZJpriWrXLnyExcHAAAAAABga9IV1gwfPlySNGXKFEmSyWSynDObzTKZTDpy5EgGlAcAAAAAAGBb0hXWfPbZZxldBwAAAAAAAJTOsKZKlSoZXQcAAAAAAACUzrBGkv78809NmzZNO3fu1JUrV5QrVy5VqlRJPXv2lJeXV0bWCAAAAAAAYDPSFdb8/vvvatu2rezt7RUQEKC8efPq3Llz+u6777R161atWLGCwAYAAAAAACAd0hXWTJw4UQULFtSSJUvk4uJiOX716lW98cYbmjJliqZPn55hRQIAAAAAANgKu/RctGvXLnXv3t0qqJEkFxcXvf3229q1a1eGFAcAAAAAAGBr0hXWZMmSRS+88EKa5xwdHZWYmPhERQEAAAAAANiqdIU1vr6++uKLL2Q2m62Om81mff755ypTpkyGFAcAAAAAAGBr0rVnTd++fdWuXTs1bdpUDRs2lJubm86dO6evv/5af/75pxYtWpTRdQIAAAAAANiEdIU1vr6+mj9/viZNmqTp06fLbDbLZDKpTJkymjdvnipXrpzRdQIAAAAAANiEdIU1klStWjWtWLFCCQkJunLlinLkyCEnJ6eMrA0AAAAAAMDmpCusedDbnkwmk7Jly6ZChQope/bs6S4MAAAAAADAFqUrrOnYsaNMJpMkWW0ynHJMkuzs7NS8eXONHDlS9vb2T1gm8N9xz+ea2SUAwFPD/84DAAAwvnSFNbNmzdK7776r5s2bq3HjxsqTJ48uXryojRs3atmyZXrvvfdkb2+vqVOnqmDBgnrnnXcyum4gw/Rs55/ZJQDAU5WcbJadnenhDQEAAJAp0hXWzJs3T0FBQRo0aJDlWNGiRVWpUiU5Oztr06ZNWrJkiSTps88+I6yBYSUmJiohIYH9lmxEQkKC/vzzTxUpUoQxtwGM9/0R1AAAABibXXouOnTokF5++eU0z1WtWlW//PKLJMnb21t///13+qsDnoJ7l/Lh+WY2m5WQkMCY2wjGGwAAAM+qdIU1bm5u2rFjR5rnduzYobx580qS4uPjlSNHjvRXBwAAAAAAYGPStQyqXbt2mjRpkhISEtSgQQPlyZNH58+f1+bNmxUeHq7evXvrn3/+0axZs1S1atWMrhkAAAAAAOC5la6wpkuXLkpISND8+fMte9OYzWa5uLiod+/e6tatmyIjI5WYmKj+/ftnaMEAAAAAAADPs3SFNZLUq1cvdenSRfv379fFixf14osvysfHR9myZZMkNWnSRM2bN8+oOgEAAAAAAGxCuvasSZGYmKgbN27oypUrKlq0qM6cOWPZyNHe3j5DCgQAAAAAALAl6Z5ZM2vWLM2ZM0c3b96UyWRS2bJlFRoaqvj4eC1cuJCNhQEAAAAAANIhXTNrwsPDFRYWps6dO2v58uWW2TQdOnTQiRMnNHXq1AwtEgAAAAAAwFakK6xZsmSJ3n77bfXt21elS5e2HK9Vq5beffddffvttxlWIAAAAAAAgC1JV1hz+vRpValSJc1zRYsW1fnz55+oKOBpMplMmV0CnhKTySQnJyfGHAAAAIChpSusyZ8/v/bt25fmuYMHDyp//vxPVBTwtDg6OsrJySmzy8BT4uTkpFKlSjHm/6HkZHNmlwAAAAA889K1wXCrVq0UFhamrFmzqnbt2pKkGzduaOPGjZozZ446d+6ckTUC/6kZS3/QqbOXM7sM4Jnnns9VPdv5Z3YZAAAAwDMvXWHNW2+9pZMnT2rixImaOHGiJKlTp06SpCZNmqhbt24ZVyHwHzt19rKOnYrP7DIAAAAAAJCUzrDGZDJp5MiRCg4O1s8//6xLly7JxcVFlStXVokSJTK6RgAAAAAAAJuRrrBm+vTpev311+Xp6SlPT0+rcydPntTChQv14YcfZkR9AAAAAAAANiVdGwzPmDFDZ86cSfPcL7/8ohUrVjxRUQAAAAAAALbqkWfWtG3bVr/88oskyWw2q02bNvdt6+vr++SVAQAAAAAA2KBHDmtGjRqlr7/+WmazWTNmzNBrr72ml156yaqNnZ2dcuTIof/9738ZXigAAAAAAIAteOSwplixYurVq5ekuxsMv/7663rxxRf/s8IAAAAAAABsUbo2GE4JbS5cuKDExESZzWZJUnJyshISErR79261a9cu46oEAAAAAACwEekKa2JiYjRw4EDFxcWled5kMhHWAAAAAAAApEO6wprx48fr8uXLGjRokL777js5OjqqTp062rZtm7Zt26bPPvsso+sEAAAAAACwCel6dfcvv/yivn376s0331RgYKASEhIUFBSk2bNnq169elqyZElG1wkAAAAAAGAT0hXWJCYmytPTU5Lk6empmJgYy7mWLVtq//79GVEbAAAAAACAzUlXWFOgQAGdOHFC0t2w5tq1azp58qQkydHRUZcvX864CgEAAAAAAGxIusKa//3vf5o0aZI2btyoF198UUWLFlVoaKiOHj2qhQsXqlChQhldJwAAAAAAgE1IV1jTq1cvVahQQStXrpQkDR48WJs2bVLz5s31888/q3fv3hlaJAAAAAAAgK1I19ugzGazpk2bpqSkJEnSyy+/rC+++ELHjx9X6dKlVbhw4QwtEgAAAAAAwFY81syao0eP6rXXXtOiRYskSQ4ODpKkK1eu6PXXX9fs2bN1586djK8SAAAAAADARjxyWHPy5El16tRJ58+fV5EiRazOOTg46P3339elS5cUFBSkM2fOZHihAAAAAAAAtuCRw5q5c+cqZ86cWr16tRo2bGh1zsnJSW+++aZWrlypF154QXPmzMnwQp8XAQEB8vb2tvyULFlSFSpUUIcOHbRr164nvv+ePXu0e/fuDKj0rvj4eK1YseKh7ebMmaPhw4enea5jx45Wz+zt7a0yZcqodu3aGjlypBISEixtAwICFBYW9sj1nT59WuvWrXvk9gAAAAAAGN0jhzU//fSTunbtqty5c9+3jZubm4KDg/XDDz9kSHHPq+DgYEVHRys6Olrbtm3TsmXLlD17dnXt2lWnT59+onsHBQXp+PHjGVSpNH78eEVFRT203ffff69atWrd93yjRo0szxwdHa1169bprbfe0vLlyzVu3DhLu5UrVyo4OPiR6xs0aJC2b9/+yO0BAAAAADC6Rw5rzp49K09Pz4e2K1GihP75558nqem55+zsLDc3N7m5uSlfvnwqUaKERowYoZs3b2rTpk2ZXZ4Vs9n80DZXrlzRkSNHVK1atfu2yZo1q+WZ3dzc5OHhofbt26tJkyZav369pV3u3LmVLVu2DKkdAAAAAIBn0SOHNblz59bZs2cf2i4+Pl6urq5PVJQtypLl7ou5HB0dJd1dDjRu3DgFBgaqatWq2rlzp+7cuaPFixerQYMG8vX1VYMGDbR06VLLPby9vSXdfZV6SEiIJOnMmTPq16+fKlWqpKpVq6p79+46duyY5ZoLFy6oT58+qlq1qsqWLau2bdtq586dkqSQkBCtXr1aO3futNw7LdHR0fLz85Ozs/NjP/cLL7xgefaU5753GdTWrVvVunVr+fn5qWbNmhozZoxu3rwp6e7yqp07d2r16tUKCAh47L4BAAAAADCiRw5rKleurIiIiIe2i4yMVKlSpZ6oKFtz5swZjRw5Us7OzlZLicLDwzV06FDNnz9f5cuX19ixYzVz5kz16tVLa9asUfv27fXJJ59o8eLFku6GJpL0wQcfaMiQIbpx44Y6duxoudeSJUuUK1cutW7d2rIJ9EcffaRbt24pPDxca9asUZEiRdSjRw/duHFDQ4YMUaNGjeTn52e5d1q+//57vfLKK4/1zLdv39bWrVv11VdfqVmzZmm22bRpk9555x3Vrl1bERERGjFihNavX6/+/ftLksLCwuTn56dGjRpp5cqVj9U/AAAAAABGleXhTe7q2LGj2rVrp7Fjx6pfv3564YUXrM4nJiYqNDRU27Zt09y5czO80OfJnDlztHDhQkl3Q4vExER5eXkpNDRUBQoUsLSrVauWatSoIUm6du2ali5dqpCQEDVp0kSS5OnpqZMnT2ru3Ll644035ObmJklycXGRi4uLVqxYoStXrmjChAmW2SuffPKJduzYoeXLl6t37946fvy4SpQooUKFCilr1qwaMmSImjRpInt7ezk7Oytr1qxycHCw3PvfzGazoqOj1a1btwc+85o1a7Rx40bL55s3b6pAgQLq0qWLunfvnuY1c+fOVf369dWjRw9JUpEiRWQ2m9WzZ0/9/vvvKlasmBwcHJQ1a9YH7qUEAAAAAMCz5JHDGl9fXw0ePFijR4/WV199perVq6tgwYK6c+eOTp8+rR07dig+Pl59+/bVyy+//F/W/Mxr27atZcaLnZ2dcubMKRcXl1TtPDw8LP/+448/lJSUpIoVK1q1qVKlij799FNduHBBefPmtTp3+PBhXb58WZUrV7Y6fuvWLcXFxUmSevXqpffee08bN25UxYoVVbNmTTVu3DhVGHc/Bw8eVNasWVW0aNEHtgsICNDAgQNlNpv166+/6pNPPlGNGjXUvXt3q2VQ94qNjdWrr76a6nlTzhUrVuyRagQAAAAA4FnyyGGNJLVv314lS5bUggULtGXLFt26dUuSlC1bNtWsWVPBwcEqV67cf1Lo88TV1dUqiLmfrFmzWv59v41+k5OTJSnNwCM5OVlFihTRrFmzUp1L2V+mfv362r59u7Zv364ff/xRixYt0vTp07V8+XIVL178oTU+7C1QKbJly2Z5Zk9PT+XLl0+dO3eWvb29PvroozSvSeuZH/S8AAAAAAA8Dx77L96KFStaZndcvHhRWbJkUY4cOTK8MFjz8vKSg4OD9uzZIx8fH8vx3bt3y83NLc1NnUuUKKGvvvpKLi4ulmVCSUlJGjBggBo2bKh69epp0qRJatasmQIDAxUYGKibN2/K399fW7duVfHixWUymR5Y17Zt2yzLlB5HtWrV1LlzZy1YsEABAQFp7nnj7e2tvXv36s0337R63pTvAwAAAACA59EjbzCclty5cxPUPCXZs2dXmzZtNG3aNK1du1Z//fWXPv/8c33xxRcKDg62hCrOzs6Ki4tTfHy8mjZtKldXV/Xp00e//PKL4uLiFBISom3btsnb21uOjo46cOCAhg0bpv379+vkyZOKiIjQjRs35OfnZ7nf2bNndeLEiVQ1Xbx4UbGxsQ98ZfeD9O3bV56envroo490/fr1VOe7du2qb775RjNnztSff/6p7777Th9//LHq1KljCWuyZcumU6dO8bp4AAAAAMBz44nCGjxdgwcPVqdOnTRx4kS9+uqrWrp0qT788EMFBwdb2gQHBys8PFyDBw+Wi4uLwsPDlStXLnXp0kWtWrXSmTNntHDhQkvYMWXKFBUqVEjvvPOOGjZsqGXLlmnixImqVKmSJKl58+ZKSEhQ48aNLW+QShEdHa2KFStaLdd6HC+88II+/vhjnT59WlOmTEl1vkGDBpo8ebI2bNigJk2aaPjw4Xr11VcVGhpqadO2bVvFxsaqadOmunPnTrrqAAAAAADASEzm+22GAjznDhw4IEla+u0JHTsVn8nVAM8+T/dcGt03MLPLsLhx44aOHDkiHx8fyz5deL4x5raHMbc9jLltYbxtjy2Mecrfob6+vg9sx8waAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADyZLZBQCZzT2fa2aXADwX+M8SAAAAkDEIa2Dzerbzz+wSgOdGcrJZdnamzC4DAAAAeKaxDAo2LTExUQkJCZldBp6ShIQEHT58mDH/DxHUAAAAAE+OsAY2z2w2Z3YJeErMZrMSEhIYcwAAAACGRlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYA5tnMpkyuwQ8JSaTSU5OTow5AAAAAEPLktkFAJnJ0dFRTk5OmV0GnhInJyeVKlUqs8u4r+Rks+zsCJIAAAAAW0dYA5s3Y+kPOnX2cmaXARvnns9VPdv5Z3YZAAAAAAyAsAY279TZyzp2Kj6zywAAAAAAQBJ71gAAAAAAABgKYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgdhUWNOrVy+9/vrrqY63bt1a3t7e2rlzp9XxqKgolSxZUhcuXMiQ/uPj47VixQrL544dOyokJCRD7v0ofvjhB3l7e6tnz56P1P7kyZPy9vbWjh07Hqm9t7e3IiIinqREAAAAAABsnk2FNdWrV9eRI0d08+ZNy7FLly7pwIEDyp8/v7Zv327Vfvfu3SpZsqTy5MmTIf2PHz9eUVFRGXKv9IiIiFCRIkW0detWnTlzJsPvHx0drcDAwAy/LwAAAAAAtsSmwppq1aopKSlJBw4csBz78ccflSdPHr322mtphjU1atTIsP7NZnOG3etxXblyRZs2bVL37t3l5ORkNcMno7i5uSlr1qwZfl8AAAAAAGyJTYU1Xl5eevHFF7V3717Lse3bt6tmzZqqWbOmYmJidP78eUnSxYsXFRcXp5o1a0qSEhMTNWHCBL388svy8/NT69atFR0dbXX/FStWqEmTJipbtqzKly+voKAgSzAUEhKi1atXa+fOnfL29rZcc/36dQ0ePFiVKlVSxYoVFRISohs3bljOx8XF6a233pKfn59q1qypAQMG6Ny5c5bzHTt21LBhw/T666+rUqVK9525s3btWiUlJemVV15RnTp1tHLlSt25c8eqTWxsrDp16qTy5curfv36+umnnyznduzYIW9vb8XFxVld06lTJw0cOFCS9TKoCxcuqE+fPqpatarKli2rtm3bWi0zu3nzpkJDQ1W3bl35+vqqWbNm2rhxo+V8RESE6tevr1GjRqlixYrq0aOHmjdvrsGDB1v1v337dvn6+urSpUtpPjcAAAAAAM8amwprpLtLofbt22f5HB0dLX9/f5UtW1YuLi6WAGbPnj3KmjWrKlasKEkaPHiwfvjhB02cOFGrV69Wo0aN1L17d23dulWStGnTJo0cOVJdu3bVhg0btHjxYt26dUtDhw6VJA0ZMkSNGjWSn5+fVcjzzTffKF++fIqIiND48eO1fv16zZs3T5J05swZBQUFycPDQytXrtTs2bN17do1tWnTxirQWbFihTp16qQvvvhCL7/8cprPvWrVKlWpUkW5c+dWYGCg/v77b0vtknT16lW9+eabcnFx0YoVK/TRRx9p1qxZlvNVqlRRwYIFtWbNGsuxf/75R7t27VLLli1T9ffRRx/p1q1bCg8P15o1a1SkSBH16NHDUnf//v0VGRmpYcOGKSoqSvXq1VPfvn21efNmyz2OHz+us2fPKjIyUv369VPLli21ceNGq2VskZGRCggIUM6cOdN8bgAAAAAAnjU2G9aYzWbFxMTo3Llz8vf3l729vapXr25ZCrVr1y5VqlRJL7zwgv766y+tXbtWY8aMUdWqVeXp6anOnTvr1Vdf1YIFCyRJOXPm1CeffKJmzZrJ3d1d5cuXV6tWrRQbGytJcnFxUdasWeXg4CA3NzdLPWXLllW/fv1UuHBh1a1bV/7+/jp48KAkaenSpXrppZc0dOhQeXl5qUyZMgoNDdWFCxf09ddfW+7h4+OjJk2aqESJEsqVK1eqZ46NjdXBgwf16quvSpJq1qypnDlz6ssvv7S0WbdunRISEjR27FgVL15c/v7++uCDDyznTSaTWrRoobVr11qOrV27Vi+++KKqVauWqs/jx48rR44cKlSokDw8PDRkyBBNmzZN9vb2iouL05YtWzR8+HDVrl1bRYoUUe/evVW3bl3Nnj3b6j49evRQoUKFVLx4cTVp0kSJiYmWQOfatWvavHlzmmERAAAAAADPqiyZXcDTVr16dV26dEl//PGHoqOjVapUKeXOnVuS5O/vr+nTp0u6u19NSrhx+PBhSVJQUJDVvZKSkpQjRw5JUuXKlRUXF6cZM2bojz/+0F9//aWjR48qOTn5gfV4enpafXZ1ddWpU6cs/f7222/y8/OzanPr1i2r5UgeHh4P7GPVqlVycHDQ//73P0my/HvlypU6deqU3N3dFRsbK09PT7m4uFiu+3e/zZs31/Tp07Vv3z75+fkpKipKzZo1k51d6syvV69eeu+997Rx40ZVrFhRNWvWVOPGjfXCCy/o6NGjkmSZtZSicuXKmjx58n2/n1y5cqlu3bqKjIxU48aNtWHDBrm4uFiWqgEAAAAA8DywubDmxRdfVJEiRbRv3z798MMPVn/o16xZUx9++KEOHTqkmJgYjR49WtL/bwz8+eefK1u2bFb3Swkq1qxZo5CQEDVp0kQVKlRQ27ZtFRsbq5EjRz6wHnt7+/ueS05OVrVq1TR8+PBU5+4NVR60qW9SUpKioqKUlJRktVmy2WxWcnKyli9frn79+slkMqUKlrJksf71KFiwoKpUqaI1a9YoW7ZsOnr0qMLCwtLst379+tq+fbu2b9+uH3/8UYsWLdL06dO1fPny+9ZqNptT9fnvZ3vttdfUvXt3XbhwwRIWPeg7BAAAAADgWWNzy6AkqUaNGtq7d6/27dsnf39/y3F3d3d5enrq888/V+7cuS0bARcvXlySdO7cOXl4eFh+IiIiLBvqzp07V61atdLYsWPVvn17Va5cWSdOnJD0/2GPyWR6rDqLFy+uuLg45c+f39Knq6urRo8ebVle9TBbt27VxYsXNXz4cEVGRlp+vvrqK5UoUUKrVq3S7du3VbJkSR07dkwXL160XJuyHOteLVu21DfffKN169apQoUKac7qSUxM1JgxY3TixAkFBgZq1KhR2rx5s+zs7LR161bL97pnzx6r63bv3q1ixYo98Hlq1qwpNzc3LV++XLt372YJFAAAAADguWOTYU316tW1YcMGmUwmVahQwercyy+/rA0bNqh69eqWcKV48eKqU6eOhg8frm+//VYnTpzQvHnzNGfOHBUuXFiSlD9/fu3du1eHDh3S8ePHtXjxYoWHh0u6G15IkrOzs86ePWsJcR4mKChIV69e1cCBAxUTE6OYmBj169dPBw4cUIkSJR7pHqtWrVL+/PnVpk0blShRwuqnc+fOOnfunDZv3qxXX31VefLk0YABAxQTE6OdO3fqk08+SXW/Bg0a6MaNG1qyZMl9gxJHR0cdOHBAw4YN0/79+3Xy5ElFREToxo0b8vPzk5eXl+rUqaMRI0Zo69at+vPPPzV9+nRt2bJFwcHBD3weOzs7NW/eXLNnz5avr6+8vLwe6XsAAAAAAOBZYZNhTdWqVXXz5k1VrVpVDg4OVudq1qypGzduWM24kaQpU6bof//7nz788EMFBgYqMjJSn3zyiVq0aCFJGjZsmPLmzasOHTro9ddf13fffafx48dLkuX13c2bN1dCQoIaN26sM2fOPLTOQoUKKTw8XNevX1e7du3UoUMHOTg46LPPPrPss/Mg58+f1/bt29W2bds0lwo1btxYbm5uWrZsmZydnfXpp5/KwcFB7dq10/vvv6+uXbumusbJyUmNGjVScnKyGjVqdN++p0yZokKFCumdd95Rw4YNtWzZMk2cOFGVKlWSJE2ePFn16tXTkCFD1LRpU3333XcKCwtTw4YNH/pcLVu21M2bN5lVAwAAAAB4LpnMKWt0gGfEjh071K1bN23fvt1q757HlRKiLf32hI6dis+o8oB08XTPpdF9AzO7jOfKjRs3dOTIEfn4+MjZ2Tmzy8FTwJjbHsbc9jDmtoXxtj22MOYpf4f6+vo+sJ3NbTCMZ1dcXJxiY2M1e/ZstWjR4omCGgAAAAAAjMoml0Hh2fTXX39p8ODBypkzp/r165fZ5QAAAAAA8J9gZg2eGQEBAdq/f39mlwEAAAAAwH+KmTUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIFkyuwAgs7nnc83sEgB+DwEAAABYENbA5vVs55/ZJQCSpORks+zsTJldBgAAAIBMxjIo2LTExEQlJCRkdhl4ShISEnT48GHDjjlBDQAAAACJsAaQ2WzO7BLwlJjNZiUkJDDmAAAAAAyNsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrYPNMJlNml4CnxGQyycnJiTEHAAAAYGhZMrsAIDM5OjrKyckps8vAU+Lk5KRSpUpldhmpJCebZWdHgAQAAADgLsIa2LwZS3/QqbOXM7sM2Cj3fK7q2c4/s8sAAAAAYCCENbB5p85e1rFT8ZldBgAAAAAAktizBgAAAAAAwFAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLDmPxQSEqKOHTs+0T0iIiLk7e2dQRVJSUlJWrx4cYb2GRYWpoCAgAee9/b2TvOnZcuWj3QPAAAAAABsRZbMLgBP19q1azVmzBi9+eab920TGBiol19+OUP7femll7Ry5cpUx7NkufsrGBwcrPbt22donwAAAAAAPIsIa2yM2Wx+aJusWbMqa9asGdqvvb293Nzc7ns+W7ZsypYtW4b2CQAAAADAs4hlUE9RQECAFixYoN69e8vPz09Vq1bVqFGjdPv2bUubTZs2qUmTJvL19VVQUJBOnz6d6h5hYWH3PXbnzh1NmDBBtWrVUpkyZdSwYUMtXbpU0t3lTYMHD5YkeXt7a8eOHQoLC1OHDh3Ur18/VahQQR9//HGqZVCxsbHq1q2bKleurDJlyqhu3bpauHBhhn439y6DOnnypLy9vTVnzhz5+/urbt26unbtmq5evaphw4apWrVqqlixojp16qQDBw5kaB0AAAAAAGQ2wpqnbOrUqapcubKioqL0/vvvKzw8XGvXrpUk7d27V71791aDBg0UFRWlFi1aaO7cuY91/y+++EJff/21pkyZoo0bN6pDhw766KOPtHv3bgUGBuqDDz6QJEVHR8vPz0+StGvXLuXNm1dfffVVqj12EhISFBwcrJw5c2rZsmVau3atGjZsqHHjxunIkSMZ8I3c3+rVq/Xpp58qNDRU2bJl01tvvaUTJ05ozpw5Wr58ucqXL6927drp8OHD/2kdAAAAAAA8TSyDespq1qypTp06SZIKFSqkJUuWaO/evWrevLnCw8NVoUIF9erVS5JUpEgRxcbG6rPPPnvk+x8/flzOzs4qWLCg8uXLpw4dOqho0aIqUqSIsmbNKhcXF0lKtSSpT58+lnN79+61HE9ISFCnTp3Uvn17yzKlPn36aP78+Tp69Kh8fHweqa7Tp09bwqF77du3777XBAUFqVixYpKkn376Sfv379fPP/+snDlzSpL69++vvXv36rPPPtPYsWMfqQ4AAAAAAIyOsOYp8/Lysvrs4uKipKQkSXeXG/n7+1ud9/Pze6ywpn379tq8ebNq1aolHx8f+fv769VXX1WePHnue02ePHksQc2/5c6dW0FBQVq7dq0OHz6s48ePKyYmRpKUnJz8yHXly5dPS5YseeT2kuTh4WH596FDh2Q2m1WnTh2rNomJibp169Zj3RcAAAAAACMjrHnKHB0dUx1L2fTXZDKlCkAcHBwees9797zx9PTUN998o507d+qHH37Q1q1bNW/ePI0ZM0YtWrRI8/oHbSZ87tw5tWnTRrlz51ZAQIBq1qwpX19f1apV66F13StLlixW4cujuLeu5ORkZc+eXREREanapfWdAgAAAADwrCKsMZCSJUumWhZ08OBBq88ODg66du2a5fO1a9d04cIFy+fPPvtMefLk0auvvip/f3+9//776ty5s9avX68WLVrIZDI9Vk1r167VpUuXtHHjRktwdPToUUmP9mapjFKiRAldu3ZNSUlJlqVRkjR06FCVLFlSHTp0eGq1AAAAAADwX2KDYQMJDg5WTEyMxo0bpz///FNRUVEKDw+3alO+fHmtX79ee/fu1e+//64PPvhA9vb2lvMXL17UyJEjtWXLFp06dUrbt2/XkSNHLPvFODs7S7obAt28efOhNb300ktKSEjQ119/rdOnTys6Olr9+/eXdHcJ0tPy8ssvy8fHR/369dPPP/+sv/76S2PGjFFERESqpWUAAAAAADzLmFljID4+Ppo3b54mTJig8PBwFS9eXN27d9fEiRMtbfr3769Lly6pc+fOcnFxUXBwsK5cuWI536tXLyUlJWnUqFE6d+6c3Nzc1K5dO3Xr1k2SVK1aNZUrV05t27bVhAkTHlpTw4YNdejQIY0dO1bXrl2Tu7u7Xn/9dW3ZskUHDhxQu3btMv6LSIO9vb0WLlyoCRMm6N1331VCQoK8vLw0ffp0Va9e/anUAAAAAADA02AyP821LICBHDhwQJK09NsTOnYqPpOrga3ydM+l0X0DM7uM59KNGzd05MgR+fj4WGYV4vnGmNsextz2MOa2hfG2PbYw5il/h/r6+j6wHcugAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMJEtmFwBkNvd8rpldAmwYv38AAAAA/o2wBjavZzv/zC4BNi452Sw7O1NmlwEAAADAIFgGBZuWmJiohISEzC4DT0lCQoIOHz5suDEnqAEAAABwL8Ia2Dyz2ZzZJeApMZvNSkhIYMwBAAAAGBphDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ1snslkyuwS8JSYTCY5OTkx5gAAAAAMLUtmFwBkJkdHRzk5OWV2GXhKnJycVKpUqafaZ3KyWXZ2hEMAAAAAHh1hDWzejKU/6NTZy5ldBp5D7vlc1bOdf2aXAQAAAOAZQ1gDm3fq7GUdOxWf2WUAAAAAACCJPWsAAAAAAAAMhbAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAwk08OagIAAeXt7a9GiRWme//DDD+Xt7a2wsDBJUkREhLy9vZ9KbSdPnpS3t7d27NghSQoJCVHHjh2fSt+ZKeU7vt/PggULnlot8fHxWrFixVPrDwAAAACAzJYlswuQJAcHB23cuFGdO3e2On779m198803MplM/9fenYfXdO5tHL8TY0LEPFRNJySCJBISc0UaXlGUOIYW5STmqZUakqPG1kyKpBpTlYZDS6Smc6hWzUE4r6oYgxAlphIlkkjW+4cr+7UrlA6yJd/Pde2r9rOmZ63f3tHcnmctU1ubNm3UrFmzF93FPGn37t3ZthctWvSF9WHGjBlKTExU586dX9gxAQAAAADISRYR1jRq1Ei7du3SlStXVL58eVN7TEyMbG1tZWNjY2orXLiwChcunBPdzHPKlCmT012QYRg53QUAAAAAAF6oHJ8GJUmurq565ZVX9J///MesffPmzfLz8zMbWfPraVA7duyQv7+/3Nzc1KhRIwUHB+v27dum5QkJCRo4cKDq1aunBg0aKCgoSDdu3DAtX7t2rfz8/OTq6io/Pz8tW7ZMmZmZz9Tv2NhYvfPOO/Lw8FCdOnXk5+enr7/+2rQ8ODhYwcHBmj59uho1aiQ3Nzf1799fSUlJpnWSkpI0fPhw1a9fXw0aNNCAAQN0/vx5s+NER0erffv2cnV1lY+Pj+bPn6+MjAxJj0/Vyq7txo0bGjZsmBo0aCBXV1d169ZNBw4ceKZzfJKLFy+qZs2a2rFjh1l7SEiI3nrrLUlSWlqaZs6cqWbNmsnd3V1dunQxG60TFRWlli1bmv5bp04d+fv769ChQ6brt27dOh04cMBU8/PnzyswMFD16tWTu7u7AgMDdfLkyT90LgAAAAAAWBKLCGskyc/PzyysSUtL07Zt2/TGG288cZubN29qyJAh6tSpkzZv3qzw8HAdPHhQM2bMkCQlJyere/fuSktL07Jly7R06VJduHBB7733niRp9erVmjFjhoYMGaJNmzbpvffe06JFizRr1qzf7G9SUpICAwPl4uKidevWKTo6Wq6urhozZoyuX79uWm/jxo26deuWIiMjtWjRIh07dkxz5syRJN27d890D5zIyEh98cUXKlGihLp06WIKdD7//HONHTtWXbt21fr16/Xuu+9qyZIlmjZt2jNf2wkTJig1NVWRkZHasGGDqlWrpkGDBunevXvPvI9fq1Spkjw9PbVx40ZTW2pqqrZu3Sp/f39JD4ObPXv2aNasWVq3bp38/Pw0YMAAff/996ZtLl++rFWrVmnmzJlat26dbGxsFBwcLMMwNGbMGPn5+cnd3d0U8gQFBalcuXJau3atvvrqK1lbW2vIkCG/+zwAAAAAALA0FjENSnoY1ixZskRJSUkqV66c9uzZo5IlS6pWrVpP3CYpKUlpaWl65ZVXVLFiRVWsWFERERGmUSebN2/W3bt3FRoaKnt7e0nSRx99pE2bNiktLU3z58/XwIEDTYFQpUqV9Msvv2jixIl69913n9rf1NRUDR06VIGBgaaRP/369VN0dLTOnz+v0qVLS5Ls7Ow0adIkFShQQA4ODmrTpo1pNMqmTZuUnJysmTNnKn/+h6WYPHmy9u/fry+//FJDhgzRokWL1KNHD3Xv3l2SVLVqVd26dUszZ87UsGHDnunaXrhwQY6OjqpUqZIKFy6sMWPGqF27dsqXL99Tt3N3d8+2fc+ePbK1tZW/v78mTZqklJQU2djY6LvvvlNGRob8/PyUkJCgjRs3Kjo6Ws7OzpKkf/zjHzpx4oSWLFkib29vSVJ6eromTpxots7gwYN17do1lS1bVoULF1aBAgVMU7IuXLigxo0bq2LFiipQoICmTJmis2fPKjMzU9bWFpM9AgAAAADwu1lMWFOnTh1VqlRJW7Zs0TvvvKPNmzc/dVSNJDk7O6tt27YaMGCAypQpoyZNmsjb21stW7aUJJ06dUpVq1Y1BTWSVLNmTdWsWVM3b97UlStXFBoaqrlz55qWZ2ZmKjU1VYmJiSpUqNATj125cmX5+/tr+fLlOnXqlC5cuKATJ05IkiksylqvQIECpvd2dnZKT0+XJMXFxen27dvy9PQ023dqaqri4+N18+ZNXb9+XfXq1TNb7uXlpfT0dJ09e1alSpV66jWSpCFDhmjkyJHasmWL6tWrp6ZNm6pt27ZPPT/p4fSr7GTdQ+h//ud/NGnSJH377bdq27at1q9fL19fXxUtWlS7du2SJL399ttm26anp6tYsWJmbQ4ODqY/29nZmdbLzvDhwzVlyhStXLlSXl5eatasmdq2bUtQAwAAAADINSwmrJH+fypU165d9e233z7TI5tnz56twYMHa+fOndq7d69GjhypevXqadmyZabRKtnJui9NSEiIGjdu/NjyChUq6OrVq0/c/syZM3r77bdVu3ZtNW7cWK1atVKJEiUee2pRwYIFn9qHatWq6dNPP31sma2t7RNvrpvV9yed36NhkSS1bNlSu3bt0q5du7R3714tXbpU4eHh+vLLL1WjRo0n9q9KlSpPXJbVx9atW2vDhg1q2rSpdu3apYULF0r6/xsDr1ixQkWKFDHb7tfBSnbX6Enn3r17d7Vu3Vo7duzQvn37NG/ePH366aeKjo42jWYCAAAAAOBlZlHDEfz8/HT48GGtXbtWlSpVMhtxkZ0jR45oypQp+tvf/qbevXtr4cKFmjJlimJiYnTjxg1Vr15d58+f1507d0zbHDt2TI0aNVJ6erpKliypixcvqkqVKqbXo/eUeZpVq1apVKlSWrp0qfr27avmzZub7lXzrE8wcnR01E8//SQ7OzvT8V955RXNnj1bBw8eVOnSpVW6dGnTDXezxMbGqkCBAmajdn755RfT8kdvUJyWlqapU6fq4sWLatOmjT766CNt27ZN1tbWZveO+b06deqkPXv2mMKShg0bSpIpBLp27ZrZ9Y2KilJUVNQz7//Rm0vfuHFDkyZNUnp6uvz9/TVz5kytX79e165d+8M3TAYAAAAAwFJYVFjj7OysKlWqaPbs2b85BUqSihYtqpUrV2rmzJlKSEjQqVOntHnzZlWtWlUlSpRQu3btZG9vr5EjR+rEiRP68ccfNX78eDk6OqpChQrq27evvvjiC0VGRurChQv65ptvNGHCBBUuXPipI2IkqXz58rpy5Yp27NihS5cuaevWrZowYYKkhwHJs2jfvr3s7e01bNgwHTlyRPHx8QoODtbOnTtNTz8KDAxUZGSkVq5cqYSEBG3YsEHh4eHq2rWr7OzsVLZsWVWsWFHLli1TfHy8Dh06pLlz55pCjoIFC+ro0aMaO3as/vd//1eJiYmKiorSvXv3nnhPmizXrl3L9pWcnGxap379+qpQoYLmzZunN9980zRqpkaNGmrRooXGjx+v7777ThcvXtSiRYu0YMECVa5c+Zmuj/Rw9M7Vq1d18eJF2dvb6/vvv9cHH3yg48eP6+LFi1q1apUKFCigOnXqPPM+AQAAAACwZBY1DUp6OLrm008/VZs2bX5zXQcHB4WFhSk8PFwrV66UtbW1GjZsqEWLFsna2lo2NjZasmSJpk6dqm7duqlw4cLy9vbW6NGjJUkBAQEqVKiQvvjiC02bNk2lS5dWly5dnunGve+8847Onj2rUaNGKS0tTVWrVlVQUJDmzZuno0eP6rXXXvvNfdjZ2SkyMlIzZsxQYGCgMjIyVLt2bX322WemUUUBAQEqWLCgli1bpilTpqh8+fLq27evAgMDJT0ceTJjxgxNmTJFb775pqpUqaKQkBD169fPdJyPP/5YU6dO1cCBA3Xnzh397W9/06xZs1S/fv2n9q9p06bZtnt7e2vBggWm9x07dtTcuXNNT4F69Lgff/yxxo0bp9u3b6ty5cqaPHmyOnbs+JvXJkuHDh30zTffqG3bttq6dasWLVqk6dOnq3fv3kpJSZGzs7MWLlz4XAEQAAAAAACWzMp41jk7QC5z9OhRSdK/vruo85d+zuHeIDeqWrGEprz728Ez/hr37t3T8ePH5ezsLFtb25zuDl4Aap73UPO8h5rnLdQ778kLNc/6PdTFxeWp61nUNCgAAAAAAIC8jrAGAAAAAADAghDWAAAAAAAAWBDCGgAAAAAAAAtCWAMAAAAAAGBBCGsAAAAAAAAsCGENAAAAAACABSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYAAAAAAABYEMIaAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIPlzugNATqtY1j6nu4Bcis8WAAAAgN+DsAZ53uC3muR0F5CLZWYasra2yuluAAAAAHiJMA0KeVpaWppSUlJyuht4QVJSUhQXF/dCa05QAwAAAOB5EdYgzzMMI6e7gBfEMAylpKRQcwAAAAAWjbAGAAAAAADAghDWAAAAAAAAWBDCGgAAAAAAAAtCWAMAAAAAAGBBCGsAAAAAAAAsCGENAAAAAACABSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYgz7OyssrpLuAFsbKyko2NDTUHAAAAYNHy53QHgJxUsGBB2djY5HQ38ILY2NioVq1aL/SYmZmGrK0JhwAAAAA8O8Ia5Hmf/GuPLl29ndPdQC5Usay9Br/VJKe7AQAAAOAlQ1iDPO/S1ds6f+nnnO4GAAAAAACSuGcNAAAAAACARSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYAAAAAAABYEMIaAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFgQwhoAAAAAAAALQlgDAAAAAABgQQhrAAAAAAAALAhhzUvIx8dHTk5OplfNmjXl4eGhHj166ODBg394/4cOHVJsbOxT19m1a5d69uwpDw8Pubm5qV27dlq4cKHS09NN69y7d08rVqx46n7CwsLk4+MjSUpMTJSTk5P279//h88BAAAAAICXFWHNSyogIEC7d+/W7t27tXPnTq1atUpFixZVnz599NNPP/2hfb/99tu6cOHCE5fv2bNHAwcOlLe3t7766iutX79eAQEBWrx4scaNG2da77PPPtOSJUt+8zzWrFnzh/oLAAAAAEBuQljzkrK1tVWZMmVUpkwZlS1bVo6Ojpo4caLu37+vb7755i899urVq9WsWTMFBgbKwcFBVapUUceOHTV8+HBFR0crOTlZkmQYxm/uq0iRIipZsuRf2l8AAAAAAF4mhDW5SP78+SVJBQsWlCTdv39fc+bM0euvvy4XFxe9+eab2rJli2n9qKgotWzZUh999JHq1aunQYMGycnJSZIUEhKi4ODgbI9jZWWlEydOKCkpyay9Q4cO2rhxo2xtbRUWFqbw8HBdunRJTk5OSkxMVHBwsIYNG6aAgAB5eHho0aJFZtOgfi0+Pl5NmjTRqFGjlJGRIUnavn27/P395erqqpYtW2rOnDlKS0v7YxcOAAAAAAALQliTSyQlJWnSpEmytbVV8+bNJUlBQUGKjo7W2LFjtX79evn6+urdd9/Vtm3bTNtduHBBV69eVXR0tIYPH67du3dLkv75z39qzJgx2R6rV69eunHjhnx8fNSrVy+Fh4frwIEDKlCggBwcHJQ/f34FBAQoICBA5cuX1+7du1WhQgVJ0pYtW9S4cWOtXbtWbdu2feL5JCQkqHfv3nrttdc0bdo05cuXTzt37tR7772nLl26aOPGjRo/frz+/e9/a+TIkX/WZQQAAAAAIMflz+kO4PdZsGCBPvvsM0nSgwcPlJaWJgcHB82ZM0evvPKK4uPj9e233yoiIkLe3t6SpKFDh+rEiROKiIiQr6+vaV+DBg1SpUqVzPZvZ2cnOzu7bI/t4eGhqKgoLV26VDt27FBMTIwkqWzZsho/frx8fX1VpEgR2draKl++fCpTpoxpW3t7e/Xp0+ep55aYmKhRo0apefPm+vDDD2VlZSVJioiIUJcuXdStWzdJUuXKlTVx4kT16tVLiYmJevXVV5/jCgIAAAAAYJkIa15S3bp1U8+ePSVJ1tbWKl68uFm4cvLkSUlSvXr1zLbz9PRUaGioWVvVqlWf+/jVq1fX5MmTJT2crrRr1y5FRkbq3XffVVRUlGk61a9VqVLlN/c9YcIEpaenq0KFCqagRpLi4uL0ww8/mN2QOOu+OPHx8YQ1AAAAAIBcgbDmJWVvb/9MwcevGYZhurdNlsKFCz/z9vfu3VNoaKg6deokZ2dnSZKDg4McHBzUvn17tWjRQrt3735iWPMsx+rYsaMcHR01bdo0tWzZUo6OjpKkzMxM9enTRx07dnxsm0dH7wAAAAAA8DLjnjW5VFZYcujQIbP22NhYVa9e/Xfvt3DhwtqwYYNWrVr12LIiRYooX758KlWqlCSZjYp5Hm+88Ybefvtt1alTRyEhIaabC9eoUUPnzp1TlSpVTK8rV65oxowZunv37u8+JwAAAAAALAlhTS7l4OCgFi1aaOLEifr+++917tw5hYeH69tvv1VAQMBTt7W1tVV8fLx+/vnnx5ZZW1trxIgRWrVqlcaPH68ffvhBiYmJ2rt3rwYPHqwKFSqodevWpv3cvn1b586dU3p6+nP139raWh9++KFOnjypxYsXS5L69u2rLVu2KDw8XOfOndO+ffsUEhKiO3fuMLIGAAAAAJBrMA0qFwsNDVVoaKjGjBmj5ORkOTo6KiwsTC1btnzqdgEBAVq8eLHi4+MVERHx2PLOnTurTJkyWrZsmfr27au7d++qdOnSev311zVjxgzTVKdWrVrpyy+/VPv27RUZGfnc/a9Ro4b69u2r8PBwvf7662rdurU+/vhjLViwQBERESpevLh8fHw0YsSI5943AAAAAACWysrIukMrkMccPXpUkvSv7y7q/KXHRxEBf1TViiU05d02Od2NPOvevXs6fvy4nJ2dZWtrm9PdwQtAzfMeap73UPO8hXrnPXmh5lm/h7q4uDx1PaZBAQAAAAAAWBDCGgAAAAAAAAtCWAMAAAAAAGBBCGsAAAAAAAAsCGENAAAAAACABSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYAAAAAAABYEMIaAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFiQ/DndASCnVSxrn9NdQC7FZwsAAADA70FYgzxv8FtNcroLyMUyMw1ZW1vldDcAAAAAvESYBoU8LS0tTSkpKTndDbwgKSkpiouLe6E1J6gBAAAA8LwIa5DnGYaR013AC2IYhlJSUqg5AAAAAItGWAMAAAAAAGBBCGsAAAAAAAAsiJXBfADkUYcPH5ZhGCpQoICsrLivSF5gGIbS09OpeR5BvfMeap73UPO8h5rnLdQ778kLNU9LS5OVlZU8PDyeuh5Pg0KelfXlz60/BPA4KysrFSxYMKe7gReEeuc91DzvoeZ5DzXPW6h33pMXam5lZfVMv4MysgYAAAAAAMCCcM8aAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFgQwhoAAAAAAAALQlgDAAAAAABgQQhrAAAAAAAALAhhDQAAAAAAgAUhrEGek5mZqXnz5qlZs2aqW7eu+vbtq4sXL+Z0t/AnWbBggXr27GnWdvz4cfXo0UN169aVj4+Pli9fbracz8TL5datWxo3bpxee+01eXh46K233lJsbKxp+b59++Tv7y83Nze1bt1amzZtMts+NTVVEydOVKNGjeTu7q73339fN2/efNGngedw48YNjRw5Ug0bNpS7u7v69eun+Ph403K+47nXuXPn5O7urqioKFMb9c6dkpKS5OTk9Ngrq/bUPfeJjo5WmzZt5OLiojfeeEP//ve/TcsSExPVv39/eXh4qGnTppozZ44yMjLMtl+xYoVef/11ubq66u2331ZcXNyLPgU8o/3792f7/XZyctLrr78uiZpnywDymLCwMKNBgwbG9u3bjePHjxsBAQFGq1atjNTU1JzuGv6gyMhIo2bNmkaPHj1MbTdv3jQaNGhghISEGGfOnDHWrFljuLi4GGvWrDGtw2fi5fKPf/zDaNu2rXHw4EHj7NmzxsSJEw1XV1cjPj7eOHPmjOHi4mKEhoYaZ86cMRYvXmzUqlXL2Lt3r2n74OBgw9fX1zh48KBx5MgRo0OHDkb37t1z8IzwW7p27Wp07tzZOHLkiHHmzBlj6NChRtOmTY179+7xHc/F0tLSDH9/f8PR0dFYu3atYRj8TM/Nvv/+e8PFxcVISkoyrl69anqlpKRQ91woOjraqFWrlhEZGWkkJCQY8+fPN2rWrGkcPnzYSEtLM1q1amX069fPOHnypPHNN98YXl5exty5c03bR0VFGa6ursbXX39tnD592hg5cqTh5eVl3LhxIwfPCk+Smppq9r2+evWqsXXrVsPJyclYs2YNNX8CwhrkKampqYa7u7uxYsUKU9vt27cNV1dXY8OGDTnYM/wRV65cMfr372/UrVvXaN26tVlYExERYTRt2tRIT083tc2ePdto1aqVYRh8Jl4258+fNxwdHY3Y2FhTW2ZmpuHr62vMmTPHGDt2rPH3v//dbJugoCAjICDAMIyHn5WaNWsa33//vWn52bNnDUdHR+Pw4cMv5iTwXG7dumUEBQUZJ0+eNLUdP37ccHR0NI4cOcJ3PBebPXu28c4775iFNdQ791q4cKHRrl27bJdR99wlMzPTaNGihTFt2jSz9oCAACMiIsLYsGGDUadOHePWrVumZatWrTI8PDxM4VurVq2MGTNmmJanp6cbzZs3NyIiIl7MSeAPuXv3rtGiRQsjODjYMAyDmj8B06CQp5w4cUJ3795Vo0aNTG3FihVTrVq1dPDgwRzsGf6IY8eOqUCBAlq/fr3c3NzMlsXGxsrLy0v58+c3tTVs2FDnz5/X9evX+Uy8ZEqUKKGFCxfKxcXF1GZlZSUrKyslJycrNjbWrJbSw3ofOnRIhmHo0KFDprYs1apVU7ly5ai3hbK3t9fs2bPl6OgoSbp586Y+//xzlS9fXtWrV+c7nksdPHhQq1ev1rRp08zaqXfudfLkSTk4OGS7jLrnLufOndOlS5fUrl07s/YlS5aof//+io2NVe3atWVvb29a1rBhQ/3yyy86fvy4bty4ofPnz5vVO3/+/Kpfvz71fklEREQoJSVFo0ePliRq/gSENchTrly5IkmqUKGCWXvZsmVNy/Dy8fHxUVhYmCpVqvTYsitXrqh8+fJmbWXLlpUkXb58mc/ES6ZYsWJq3ry5ChYsaGrbsmWLEhIS1KxZsyfWOyUlRT///LOSkpJUokQJFSpU6LF1qLflGzt2rBo1aqRNmzZp8uTJsrW15TueCyUnJ2vUqFH64IMPHqsb9c69Tp06pZs3b6p79+5q3Lix3nrrLe3cuVMSdc9tzp07J0m6d++eAgMD1ahRI3Xu3FnfffedJOqd22X9o8uAAQNUvHhxSdT8SQhrkKekpKRIktkvepJUqFAhpaam5kSX8Be7f/9+tvWWHt5ols/Ey+3w4cMKCQlRq1at5O3tnW29s96npaUpJSXlseUS9X5Z9OrVS2vXrlXbtm01ePBgHTt2jO94LjRhwgS5u7s/9q/uEj/Tc6sHDx7o7Nmzun37toYOHaqFCxeqbt266tevn/bt20fdc5lffvlFkjR69Gi1bdtWn332mZo0aaJBgwZR7zxg5cqVsrOzU9euXU1t1Dx7+X97FSD3KFy4sKSHv7Rl/Vl6+EPAxsYmp7qFv1DhwoWVlpZm1pb1Q93W1pbPxEts27ZtGjFihDw8PDRr1ixJD//S/nW9s97b2Nhk+3mQqPfLonr16pKkyZMn68iRI4qMjOQ7nstER0crNjZWGzZsyHY59c6d8ufPr/379ytfvnymutWpU0enT5/WkiVLqHsuU6BAAUlSYGCgOnbsKElydnZWXFycli5d+lz1/vU61NvyRUdHq0OHDmbfVWqePUbWIE/JGjp39epVs/arV6+qXLlyOdEl/MXKly+fbb0lqVy5cnwmXlKRkZEaOnSoWrRooYiICNO/vlSoUCHbWtra2srOzk7ly5fXrVu3HvvLnnpbrps3b2rTpk168OCBqc3a2lrVq1fX1atX+Y7nMmvXrtWNGzfk7e0td3d3ubu7S5LGjx+vPn36UO9crEiRIma/vElSjRo1lJSURN1zmayaZN2LLEv16tWVmJhIvXOxEydO6OLFi4+NnKTm2SOsQZ5Ss2ZNFS1aVPv37ze1JScnKy4uTp6enjnYM/xVPD09dejQIWVkZJjaYmJiVK1aNZUqVYrPxEto5cqV+vDDD9W9e3eFhoaaDYmtX7++Dhw4YLZ+TEyMPDw8ZG1trXr16ikzM9N0o2Hp4dz5pKQk6m2hrl+/rqCgIO3bt8/Ulp6erri4ODk4OPAdz2VmzZqlzZs3Kzo62vSSpGHDhmny5MnUO5c6ffq0PDw8zOomST/++KOqV69O3XOZ2rVrq0iRIjpy5IhZ+6lTp1S5cmV5enoqLi7ONF1KeljvIkWKqGbNmipVqpSqVatmVu8HDx4oNjaWelu42NhY03f2UdT8CXL6cVTAixYaGmp4eXkZ27ZtM44fP24EBAQYrVq1MtLS0nK6a/gTjB492uzR3devXzc8PT2N0aNHG6dPnzbWrl1ruLi4GFFRUaZ1+Ey8PM6ePWvUrl3bGDx4sHH16lWzV3JysnHq1Cmjdu3axsyZM40zZ84YS5YsMWrVqmXs3bvXtI+goCDDx8fHiImJMY4cOWJ06NDB7DMDy9OnTx+jVatWxoEDB4yTJ08aQUFBhqenp3Hp0iW+43nAo4/upt65U0ZGhtGpUyejTZs2xsGDB40zZ84YU6ZMMerUqWOcPHmSuudCn3zyieHu7m5s2LDBSEhIMObPn2/UrFnTiImJMe7fv2/4+voagYGBxvHjx41vvvnG8PLyMsLCwkzbr1692nB1dTWioqKM06dPGyNHjjQaNGhg3LhxIwfPCr8lJCTE6N2792Pt1Dx7VoZhGDkdGAEvUkZGhkJDQxUVFaX79+/L09NT48aN06uvvprTXcOfIDg4WJcuXdIXX3xhavvhhx80efJkxcXFqUyZMgoICFCPHj1My/lMvDwiIiL08ccfZ7usY8eOmjZtmnbu3KmZM2fq/PnzevXVVzV06FC1adPGtN69e/c0ZcoUbdmyRZL02muv6YMPPlCJEiVeyDng+d25c0ezZ8/Wtm3bdOfOHdWvX1/BwcGqUaOGJL7juZ2Tk5OmTp0qf39/SdQ7t7p+/bpmz56tXbt2KTk5WbVq1dKIESNUv359SdQ9N1q6dKkiIyOVlJQkBwcHDR06VL6+vpKkhIQETZw4UbGxsbK3t9ff//53DR06VNbW/z8xZMmSJVq+fLlu3bqlOnXq6IMPPpCzs3NOnQ6eQd++fVW0aNFs/1+Omj+OsAYAAAAAAMCCcM8aAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAHgOhmHkdBcAALkcYQ0AAMAjevbsqVq1auno0aPZLvfx8VFwcPAL6UtwcLB8fHxeyLGex4MHDxQcHCx3d3d5eHgoJiYm2/WcnJwUFhb2px47KipKTk5OSkxMfOI6iYmJcnJyUlRU1J96bEk6dOiQ+vXr96fvFwCARxHWAAAA/EpGRoZCQkKUlpaW012xSLt27dK6devUu3dvLViwQC4uLi/s2N7e3lq9erXKli37wo75qK+++krx8fE5cmwAQN5BWAMAAPArdnZ2On36tD755JOc7opFunXrliTJ399fnp6eKlKkyAs7dsmSJVW3bl0VLFjwhR0TAIAXjbAGAADgV5ydndWhQwctXrxYP/7441PXzW6qT1hYmJycnEzvg4ODFRgYqNWrV8vX11eurq7q1q2bzp07p+3bt6tdu3Zyc3NT586ddfz48ceOsXr1anl7e8vV1VW9evVSXFyc2fKffvpJQUFB8vLykpub22PrZE0LWrp0qVq3bi03NzetXbs22/PJyMjQihUr1K5dO7m6usrb21uzZs1Samqq6VyypoH5+vqqZ8+eT70+j/Lx8dG8efM0ffp0NW7cWK6urgoMDNT58+fN1tuxY4e6deumunXrqmnTpho3bpySk5MlZT8NauvWrWrfvr1cXV3VsWNHnThx4rFj37p1S+PGjVPjxo3l4uKiLl26aN++fWbrODk5acWKFRozZoy8vLzk7u6ud999V9evXzed+7p163Tp0iWzaVYbN240Hb9hw4YaMWKEkpKSnvm6AADwa4Q1AAAA2fjnP/+pEiVK/GnTof773/8qMjJSwcHBmjp1quLj49WvXz9NnTpV/fv3V2hoqC5fvqwRI0aYbXflyhWFh4frvffeU2hoqG7fvq2ePXvqp59+kiTdvHlT3bp107FjxzR27FjNnj1bmZmZ6t69+2PTdcLCwtS3b1/NmDFDTZo0ybaf48aN09SpU+Xr66tPP/1U3bt3V2RkpAYNGiTDMDRo0CANHDhQkhQeHq7x48c/13VYvny5zp49q6lTp+qjjz7Sjz/+qNGjR5uWb9++Xf3791epUqU0Z84cjRgxQtu2bdPw4cOz3d93332nYcOGycnJSZ988on8/Pw0cuRIs3VSU1PVq1cvffvttxo+fLjCw8NVvnx59enT57HA5uOPP1ZmZqZCQ0M1atQobd++XVOmTJEkDRo0SM2bN1eZMmVMAdqhQ4c0atQotWrVSosWLVJISIhiYmL0/vvvP9d1AQDgUflzugMAAACWyN7eXpMmTdLAgQP1ySefPDEseFZ3797VnDlz5ODgIEk6cOCAVq1apc8//1yNGjWSJCUkJGj69OlKTk5WsWLFJD0c6fLJJ5/I1dVVkuTm5iZfX1998cUXGj16tJYtW6Zbt27pX//6lypWrChJeu2119SmTRvNnTtX8+bNM/XBz89PnTp1emIfz5w5ozVr1uj999833US3SZMmKlu2rEaNGqWdO3eqefPmqly5sqSHI5BeffXV57oOxYoV0/z585UvXz5J0oULFxQWFqaff/5ZJUqUUFhYmJydnRUeHi4rKytJUsGCBTV37lzTCJdHZV2bmTNnSpKaNWsmSZo9e7Zpna+//lonTpzQl19+KTc3N9M16tmzp2bNmmU2ysjR0VFTp041vf/hhx/0n//8R5JUuXJllSxZUgULFlTdunUlSWvWrFHhwoXVr18/09Ss4sWL6+jRozIMw3QOAAA8D0bWAAAAPIGPj4/at2+vxYsX69ixY39oX/b29qagRpJKly4tSabwQHr4S74k05QfSapUqZIpqJGkMmXKqG7dujp48KAkad++fXJ2dla5cuX04MEDPXjwQNbW1nrttde0d+9esz44Ozs/tY8HDhyQJL3xxhtm7W+88Yby5cun/fv3P+vpPpGLi4spqJGk8uXLS5JSUlJ0//59xcXFydfX1yzkaNOmjbZs2WK6Zlnu37+vY8eOqUWLFmbtfn5+Zu/37dunMmXKqHbt2qZrlJGRoRYtWujHH3/U7du3TetmhTCP9i8lJeWJ5+Pp6amUlBS1bdtWs2fPVmxsrJo2baohQ4YQ1AAAfjdG1gAAADzFBx98oH379ikkJOSJ93l5FkWLFs223dbW9qnb/TqgkKRSpUrp8uXLkh7eiyUhIUG1a9fOdvtHg4bfOlZWaFGmTBmz9vz586tEiRK6c+fOU7d/FjY2Nmbvra0f/tthZmambt++LcMwVKpUqWfaV9b6JUqUMGv/9ZOibt26pWvXrj3xGl27dk329vZP7J9hGE/sg7u7uxYuXKjPP/9cS5cu1cKFC1W6dGkNGDDgue7nAwDAowhrAAAAnsLe3l4TJkzQ4MGDNX/+/GzXycjIMHt/7969P+34j476yHLt2jWVLFlS0sMnV3l5eWnUqFHZbv88T03KCiyuXbtmmlIlSenp6aZpSn+lokWLysrKSjdv3jRrT01NVUxMjNkoJOnhSCRra+vHpkdlPa0qi52dnapWrapZs2Zle9znncr1a82aNVOzZs2UkpKimJgYLV++XB999JHc3NzMRkUBAPCsmAYFAADwG3x9fdW2bVstXLjwsSChaNGijz355/Dhw3/asc+dO6cLFy6Y3l++fFn//e9/1aBBA0mSl5eXzp07p2rVqsnFxcX0+vrrr7VmzRqzKUe/xcvLS5K0adMms/ZNmzYpIyND9erV+xPO6MmKFCkiZ2dnbd++3ax9586d6tevn65evWrWXqhQIbm7u2vr1q1mo1++++47s/W8vLx0+fJllSpVyuwa7dmzR4sXL36ua5Q1EijL9OnT1alTJxmGIRsbG7Vo0cJ0w+Ssm0ADAPC8GFkDAADwDMaOHauYmJjHRnF4e3tr06ZNcnNzU5UqVRQVFaWEhIQ/7biFChXSwIEDNXz4cGVkZGju3LkqXry4evXqJUnq3bu3vv76a/Xu3VsBAQEqUaKENm/erC+//FIhISHPdazq1aurY8eOmjdvnlJSUuTp6anjx48rPDxcDRo0MN289680bNgwDRw4UEFBQerQoYOuX7+u0NBQ+fr6ytHR8bFHqQcFBalXr14aMmSIunbtqnPnzikiIsJsHX9/f0VGRuof//iHBgwYoAoVKmjv3r1atGiRevTooQIFCjxz/4oVK6br169rx44dcnZ2VsOGDbV06VIFBwerffv2Sk9P1+LFi1W8eHE1bNjwT7kmAIC8h5E1AAAAz6B48eKaMGHCY+0hISFq0aKFpk+frmHDhsnW1vZPfWxzrVq11LlzZ02YMEGjRo1S5cqVtXLlStM0qHLlymnVqlWqWLGiJkyYoAEDBuiHH37Q5MmT1bt37+c+3uTJkzV48GBt2LBB/fr104oVK/TOO+9o0aJFj40q+Su0aNFCERERunDhggYPHqy5c+eqXbt2pqc9/Vr9+vW1aNEiJSUlaciQIVq9erXpUdtZbG1ttWLFCtWrV08zZ85U3759tXXrVr3//vvPHWj5+/urYsWKGjx4sKKjo9W8eXPNmjVLp0+f1pAhQxQUFCQbGxstX77cdMNoAACel5XxtDumAQAAAAAA4IViZA0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFgQwhoAAAAAAAALQlgDAAAAAABgQQhrAAAAAAAALAhhDQAAAAAAgAUhrAEAAAAAALAghDUAAAAAAAAWhLAGAAAAAADAgvwfWqoxyeRtXb8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Count the occurrences of each category and select the top 10\n", "top_categories = data['Category'].value_counts().nlargest(10).index\n", "\n", "# Filter the DataFrame to include only the top 10 categories\n", "data_top_categories = data[data['Category'].isin(top_categories)]\n", "\n", "# Plot\n", "plt.figure(figsize=(12, 8)) # Adjust size as needed\n", "sns.countplot(y='Category', data=data_top_categories, order=data_top_categories['Category'].value_counts().index)\n", "plt.title('Top 10 Event Categories Distribution')\n", "plt.xlabel(\"Number of Incidents\")\n", "plt.ylabel('Category')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### zoom into countries" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "# Filter data for China and United States\n", "china_cases = data[data['Region'] == 'China']\n", "us_cases = data[data['Region'] == 'United States']\n", "\n", "# Get top 5 event categories for China\n", "china_top_5 = china_cases['Category'].value_counts().nlargest(5)\n", "\n", "# Get top 5 event categories for United States\n", "us_top_5 = us_cases['Category'].value_counts().nlargest(5)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "# Convert Series to DataFrame\n", "china_plot_data = china_top_5.reset_index().rename(columns={'index': 'Category', 'Category': 'Category'})\n", "us_plot_data = us_top_5.reset_index().rename(columns={'index': 'Category', 'Category': 'Category'})" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Categorycount
0Port Congestion242
1Port Closure116
2Port Disruption96
3Maritime Advisory71
4Maritime Accident24
\n", "
" ], "text/plain": [ " Category count\n", "0 Port Congestion 242\n", "1 Port Closure 116\n", "2 Port Disruption 96\n", "3 Maritime Advisory 71\n", "4 Maritime Accident 24" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "china_plot_data" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_4868/712307362.py:9: FutureWarning: \n", "\n", "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", "\n", " ax_china = sns.barplot(x='count', y='Category', data=china_plot_data, palette='Oranges_r')\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAImCAYAAACM3K1sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2fklEQVR4nO3dd3yN9///8edJJCVE7NorIVYisbeIKE2NUkXFDDVrK2LUas1Kkdi7aCliUy2folqlRmtLGxS1Z4xIJDm/P/xyvk4TJJVILn3cb7dz++Rc83WdvHs+nnm/r/dlMpvNZgEAAAAAYEA2qV0AAAAAAAD/FqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAkiSz2fyfPDcAwNgItQAAQxoyZIhcXV2f+2rbtm2K1jBw4MAEz/vtt98+c5+goKAX1h0ZGZmidSfk4MGD6tKlS6K2DQ8PV3BwsBo1aiRPT09VrVpV7du31//+978knzcqKkrjxo3Txo0bk7xvStq3b59cXV21b9++FD1PSEiIXF1ddfHixWQ53tmzZzVq1Cj5+PjI3d1dXl5e6t+/v06dOmW1Xdu2bV/430dcWwWAtC5dahcAAMC/0aNHD7Vq1cryfubMmTpx4oSCg4MtyzJlypSiNZw6dUoNGzaMFw4KFy78wn1Xrlz5zHX29vYvW1qSrVq1SmFhYS/cLiwsTB9++KFiY2PVrl07lShRQg8fPtTGjRvVvXt39enTRz169Ej0ea9du6YlS5Zo/PjxL1N+sitdurRWrlwpFxeXFD2Pl5eXVq5cqVy5cr30sb777jsNGjRIxYoVU/fu3ZU/f35duXJFS5YsUYsWLTRr1ixVr1490cd7//33VbNmzZeuCwBSGqEWAGBIBQsWVMGCBS3vs2XLJnt7e3l4eLyS80dGRurs2bNq3779vzrnq6ozOT1+/Fh9+/aVnZ2dvvrqK2XPnt2yzsfHRyNGjNC0adPk7e2tEiVKpGKlLy9Tpkyv5HeULVs2ZcuW7aWPc/78eQ0ePFg1a9bU1KlTZWtra1n31ltv6YMPPtDgwYP1v//9L9F/NMmdO7dy58790rUBQEpj+DEA4LX2008/qXXr1ipfvrwqV66sAQMG6PLly5b1ccM/f//9dzVt2lTu7u5q1KjRc4cQS1JoaKiio6NVsmTJFKl748aNcnV1VWhoqNXy7du3y9XVVSdOnJAk3blzR5988omqVasmNzc3tWjRQnv37rXax9XVVcuXL9ewYcNUqVIleXp6qk+fPrpx44akJ0O5165dq7///luurq4KCQlJsKZdu3YpNDRUffr0sQq0cXr37q02bdooOjraqt7WrVvL09NTZcqUUYMGDbR8+XJJ0sWLF1W3bl1JUkBAgLy9vS37HThwQG3atFHZsmVVqVIlDR48WLdu3bI63+HDh+Xn5ycPDw95eXlpyZIl6tChg4YMGWLZ5t69exo/frx8fHzk5uamhg0bavXq1VbH8fb21rhx49S+fXu5u7tr2LBhCQ4/Dg0NVdeuXVWuXDmVK1dOPXv21IULF6yOtWTJEjVo0EBubm6qWbOmRo0apfv37yf4eUrxhx8PGTJEHTp00Jo1a1S/fn2VKVNGTZo00e7du595DElaunSpoqKiNHz4cKtAK0kZMmTQ4MGD9d577+nu3buW5WazWfPmzZOXl5fc3d3VsmVLHTlyxLL+n8OP27Ztq2HDhmnu3Lny8vKSm5ubWrVqZbWP9PzfOQCkBEItAOC1tW7dOvn7+ytPnjwKDAxUQECADh8+rJYtW+rmzZtW23bt2lV169ZVcHCwihQpor59+2rXrl3PPHbcPYqrVq1SjRo1VKZMGbVu3Vq///57omqLjo5O8BUbGyvpSc+ng4ODNm/ebLXfpk2bVKxYMZUqVUqRkZFq3769duzYoX79+ik4OFi5c+dW586d4wXbL774QrGxsQoMDNSgQYP0ww8/aNy4cZKeDOWuXbu2cubMqZUrV8rLyyvBmnfv3i1bW1vVrl07wfU5c+bUiBEjVKZMGUnSzp071bNnT5UuXVozZ85UUFCQChQooDFjxuj3339Xrly5LMPFu3fvbvn5119/VYcOHZQ+fXpNnTpVQ4cO1f79+9WuXTs9evRI0pNh0B06dJAkBQYGqlevXpo7d64OHjxoqefRo0dq3bq1Nm7cqM6dO2vmzJkqX768hg0bptmzZ1vVvnz5crm5uWnmzJlq3rx5vGs7e/asWrVqpZs3b2rixIn67LPPdOHCBX3wwQeWtrRp0yZNnjxZfn5+WrBggXr27Kn169dr7NixCX5ez3Ls2DEtWLBAvXv31owZM2Rra6tevXpZBdJ/+vHHH1WqVCm9+eabCa6vWrWq+vXrp5w5c1qWHTx4UN9//71GjBihyZMn69q1a+revbvVHyX+adu2bdqxY4eGDx+uwMBA3bhxQ7169VJMTIykF//OASAlMPwYAPBaio2N1eeff64aNWpoypQpluXlypWTr6+vFixYoEGDBlmWt23bVj179pQk1axZU02bNtWMGTOeGeBOnjwpSYqIiNCUKVN0584dzZ07V+3atdPKlStfOPy2dOnSCS738/PTJ598ogwZMqh+/frasmWL+vXrJ0l68OCBfvjhB0ud69ev16lTp/TNN9+obNmykqRatWqpbdu2+vzzz7VmzRrLcYsXL2513+qRI0csvdEFCxZM1PDtK1euKGvWrMqYMeNzry3On3/+qaZNm2rYsGGWZZ6enqpcubL27dunsmXLWnq6CxYsqFKlSkmSpkyZoiJFimjOnDmWXseyZcvqnXfe0Zo1a+Tn56c5c+bI0dFR8+fPV4YMGSRJRYsWtbrPOiQkRKGhoVqxYoU8PT0lPfndRkdHa+bMmWrVqpWyZMkiScqbN68GDhxo2fefE0QFBwcrQ4YMWrx4seVe7apVq8rHx0fz58/X4MGDtX//fuXPn19+fn6ysbFRpUqV5ODg8NwwmpB79+4pJCTEMrzewcFBbdq00S+//KL69esnuM+VK1eSPGrA3t5ec+fOtXwG4eHhGj58uP78889ntt/o6GgtWLDA8hk8ePBAgwcP1smTJ1WmTJlE/c4BILkRagEAr6WzZ8/q+vXrGjBggNXyggULytPTU/v377da3rRpU8vPJpNJ9erVU1BQkB49eqT06dPHO36bNm1Up04dq4l0qlatqrfeekuzZ8/W1KlTn1vfP4fAxnl6WG+TJk20du1aHTlyRO7u7tqxY4eioqLUuHFjSdLevXuVM2dOlS5d2qp3rU6dOpo0aZLu3r0rJycnSfHv4c2dO7ciIiKeW+M/2draWnrkEqNz586SngSfs2fP6vz58zp69KikJ7MeJyQiIkK///67OnXqJLPZbLmuAgUKyNnZWT/99JP8/Pz0yy+/qFatWpZAKz0JT/ny5bO8379/v/Lly2cJtHEaN26s1atX6/fff7f80eJFgfCXX35RpUqVlD59ektNmTJlUoUKFfTzzz9LkqpUqaKVK1eqWbNm8vHxUe3atdWoUSOZTKZEf2bSk/tsn75fPO6+1uf9vpL6u5EkFxcXS6CVpPz580t6Eqqft8/TE7DF9QzH1fZvfucA8LIItQCA19KdO3ckSTly5Ii3LkeOHJZ7UuP8c/bZ7Nmzy2w2Kzw8PMFQW7RoURUtWtRqWebMmVWuXLl4j09JiJub2wu3qVy5st58801t3rxZ7u7u2rx5sypVqmQJOXfu3NH169ef2et7/fp1S6h9OvxJko2NTZKfDZsvXz7t3LlTDx48eGZv7ZUrVyz13bp1SyNHjtT27dtlMplUqFAhVahQQdKzn0sbHh6u2NhYzZs3T/PmzYu3/o033rAcO6H7ep/+fd+9e9dquO0/twkPD7csc3BwSLCeOHfu3NGWLVu0ZcuWeOviJnry9fVVbGysvvrqK8vQ23z58mngwIHy9fV97vGf9s/fVVwojhuanpC8efPq0qVLz1z/+PFj3b171+rz+ec129jYvPA8CbWjp/f5N79zAHhZhFoAwGsprgcqbjKkp12/fl1Zs2a1Wnbnzh2rf/DfuHFDtra2Vj1ZT9uyZYsyZ86sGjVqWC2PjIxMltlspSeBoVGjRtq0aZO6deumn376SWPGjLGsd3R0VOHChfX5558nuH9cz1tyqVGjhpYuXaoff/xRDRo0iLf+1q1bqlu3rlq3bq1hw4Zp4MCBOnPmjBYvXixPT0/Z29srIiJC33zzzTPPkTFjRplMJnXo0EHvvPNOvPVxoSp37twJ/m5v3rxp+WODk5OT/vrrr3jbXL9+XZLitYHncXR0VLVq1dSxY8d469Kl+79/TjVs2FANGzbUvXv3tGfPHs2bN08ff/yxypcv/8z7XZNDjRo1tGTJEl2/fj3BIL9r1y717NlTwcHBqlevXorV8W9+5wDwspgoCgDwWipSpIhy5sypTZs2WS2/cOGCfvvtN5UrV85q+fbt2y0/m81mfffddypfvvwzH3+yYsUKjRw50mpI5dWrV3Xo0CFVrlw52a6jSZMmunLlimXCoLfeesuyrlKlSrp8+bKyZ88uNzc3y+unn37S/Pnz482C+zxxPW7PU6NGDRUvXlxffPGFbt++HW/9lClTFB0drUaNGkl6MhHRW2+9pcqVK1s+x7hZfON69v5ZY6ZMmVSqVCmdOXPG6pqKFSumoKAgy72uFStW1I8//qjIyEjLvidOnLDMIhy3zd9//63Dhw9bnWPDhg2ys7OTu7v7C685TqVKlfTnn3+qZMmSlprKlCmjxYsX6/vvv5ck9e3b13K/s6Ojo95++2316NFD0dHRunbtWqLP9W/4+fnJzs5On332WbxhyA8fPtT06dOVNWtW1apVK0XrSMzvHACSGz21AIDXko2Njfr376+AgAANGDBAjRs31u3btxUcHCwnJ6d4PW6TJk1SZGSkihQpolWrViksLExLlix55vF79Oihjh07qkePHmrXrp3u3r2r4OBgZcmSRf7+/i+s77fffnvmuiJFiliGDRcvXlwlS5bUV199pbffftvqfsZmzZpp2bJl6tixo7p166Y8efLo559/1rx589SmTRvZ2dm9sI44mTNn1o0bN7Rr1y6VLFky3nBs6UmP5KRJk+Tv76/33ntP7dq1U4kSJXTr1i2FhIToxx9/1IABAyxh0d3dXRs3blTp0qWVO3duHTp0SHPnzpXJZLLcg+no6Cjpyf3Bzs7OKlu2rPr3768uXbpYfm8xMTFauHChfv/9d/Xo0UOS1K1bN23ZskWdO3eWv7+/wsPDNW3aNNnY2FiG6zZr1kxfffWVevbsqd69eyt//vz63//+pzVr1uijjz5S5syZE/359OjRQ61atVLXrl31wQcf6I033tDKlSu1fft2TZ8+XdKTe2pHjhypiRMnqlatWgoPD1dwcLAKFy6c4s/tzZ8/v0aNGqVhw4bJz89PrVq1Up48eXT+/HktWrRIFy5c0IIFCyzDt1NKYn7nAJDcCLUAgNdWs2bNlDFjRs2ZM0c9e/ZUpkyZVLNmTfXv3z/eEM1Ro0Zpzpw5unDhgkqVKqWFCxda7gVMSJUqVbRw4UIFBQWpX79+srGxUc2aNTVw4EBLUHueli1bPnPdjBkz5OPjY3nfpEkTTZgwwTJBVBwHBwctX75cU6ZM0eTJk3Xv3j3ly5dPAwYMSFSwflqzZs0sQ1R79+6tLl26JLhdyZIltXr1ai1atEhff/21rl69KgcHB7m6umr+/PlWE2dNmDBBY8eOtTzSpnDhwho9erQ2bNigAwcOSHrSM9uxY0etXLlSu3bt0k8//aQaNWpowYIFCg4OVu/evWVnZ6fSpUtr0aJFlgmvChUqpAULFmjSpEnq3bu3smfPrq5du2rWrFmW+30zZMigpUuXasqUKZo2bZru37+vokWL6rPPPkvwsT3PU6JECS1fvlxffPGFBg0aJLPZrOLFi2vGjBmWZ+22atVKjx8/1ooVK/TVV18pffr0qlq1qj7++OMk/YHh32ratKkKFSqkJUuWaOrUqbp586Zy5sypcuXKKSgoSM7OzileQ2J+5wCQ3Exm7toHAPyHhYSEKCAgQDt27Ej2e1CRcvbu3Ss7OzurPzyEh4erWrVqGjRokNq1a5eK1QEAXiV6agEAgOEcP35c06dPV//+/VW6dGnduXNHixYtkqOjoxo2bJja5QEAXiFCLQAAMBx/f39FRUXp66+/1uXLl+Xg4KBKlSpp/PjxyTb7NADAGBh+DAAAAAAwLB7pAwAAAAAwLEItAAAAAMCwCLUAAAAAAMNioiikGYcPH5bZbH4lz/IDAAAAkHY9fvxYJpNJnp6eL9yWnlqkGWaz2fICUoLZbFZUVBRtDCmC9oWURhtDSqJ9IaUltY0lJRfQU4s0w87OTlFRUXJxcZGDg0Nql4PX0MOHD3Xy5EnaGFIE7QspjTaGlET7QkpLahs7evRooo9NTy0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUIs0xmUypXQJeUyaTSRkyZKCNIUXQvpDSaGNISbQvGBnPqUWaYm9vrwwZMqR2GXhNZciQQaVKlUrtMvCaon0hpdHGkJJoX4iNiZGNrW1ql/GvEGqR5uwe31N3z/+Z2mUAAAAA/wlOBV1UK2BGapfxrxFqkebcPf+nbv15NLXLAAAAAGAA3FMLAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAADiiY2N1ddff61GjRrJ09NTdevW1bhx43T//v0Et1+yZIlcXV118eJFq+V//fWXBg0apB49eqhmzZr64IMPtHfv3mSrk1ALAAAAAIhn/vz5Gjt2rLy8vDRjxgz5+/tr/fr16tWrl8xms9W2Z8+eVWBgYLxj3L59W23atNG5c+fUrl07TZgwQTly5JC/v7/279+fLHWmS5ajvCLe3t76+++/Le9NJpMcHBxUqlQp9enTRxUrVnyp4x88eFBms1kVKlR47nZr167VqlWrFBoaKkkqVqyYOnTooPr167/U+VPDH3/8ob///lteXl6SJFdXV40fP17NmjVL3cIAAAAApJrY2FjNmzdPLVu21IABAyRJ1apVU9asWdWvXz8dO3ZMbm5ukqSYmBgFBAQoS5YsunLlitVx1q1bp9u3b2vp0qW6efOmSpYsKW9vbzVp0kQLFixQpUqVXrpWw/XU+vv7a8+ePdqzZ492796tFStWKFOmTOrcubMuXbr0Usdu3bq1zp8//8z1ZrNZffr00YQJE+Tr66sVK1Zo5cqVqlWrlvr166e5c+e+1PlTQ9euXXX06FHL+z179sjX1zcVKwIAAACQ2u7fv68mTZqoYcOGVsuLFi0qSbpw4YJl2YIFC3Tjxg116dIl3nHefPNNdejQQbly5bIss7W1VaFChZ6bvZLCUD21kuTg4KCcOXNa3ufKlUujR49WrVq19P3336t9+/Ypdu6vvvpK33//vVatWqXSpUtblnfv3l0xMTGaPn26GjZsqLx586ZYDSnt6c8WAAAAwH9T5syZNXz48HjLt2/fLklycXGR9GTkZ3BwsObPnx/vXlpJ8vX1la+vrx4+fGhZdvfuXf3666+qUqVKstRquJ7ahKRL9ySb29vbS5IePXqkqVOnqm7dunJzc1OTJk20bds2y/YhISGqV6+ePv30U5UvX149evSQq6urJCkgIEBDhgxJ8DwrVqyQl5eXVaCN0759ey1evFg5cuRIUg1x/1umTBk1a9ZMBw8etGwTERGhkSNHqnLlyipXrpyGDRumAQMGWNV36NAh+fn5yd3dXV5eXho9erTVjdtHjhxR69at5enpqYoVK6pXr16WHu244dzBwcFq27atpCfDj0NCQiz7r1u3To0bN5a7u7u8vb01c+ZMxcTESJIuXrwoV1dXbdu2Te+//77KlCkjb29vrVy58oW/MwAAAADG8vvvv2vu3LmqU6eOihcvrujoaA0ePFjvv/9+oocRx8bGasSIEbp//746d+6cLHUZPtRevXpVY8aMkYODg2rXri1J6t+/v9atW6cRI0Zow4YN8vHxUZ8+fSx/VZCk8+fP69q1a1q3bp369eunPXv2SJKGDh2qYcOGxTtPZGSkQkNDVa5cuQTrcHR0VIUKFSzBOjE1XL58WStWrNDkyZO1du1aZciQQUOGDLHcdD148GD99NNP+uKLL7RixQrdu3dPmzdvtux/6tQpdezYUTVr1tSGDRv0+eef6/jx4/L395fZbFZMTIy6du2qihUrasOGDVq8eLEuXbqkoUOHSpJWr16t3Llzy9/fX0FBQfGuafHixRoxYoRatmypDRs2qE+fPlqwYIEmTJhgtd348ePVrVs3bd26VV5eXho1apTVcAQAAAAAxnbw4EF17txZ+fPn1/jx4yVJs2fPVnh4uOWe2xeJjo7W8OHDtW3bNg0bNkzu7u7JUpvhhh/PmTNHCxculPTkQ4mKipKzs7OmTp2qvHnzKiwsTDt27NDs2bMtkx/16tVLp06d0uzZs+Xj42M5Vo8ePVSgQAGr4zs6OsrR0THeee/evStJcnJyemGNia3h8ePHGj16tEqWLClJ6tixo3r27Knr168rMjJS27Zt0/z581WtWjVJ0uTJk3Xo0CHLeRYsWKDq1aurW7dukqTChQtrypQp8vHx0f79+1WiRAndvn1buXLlUr58+VSgQAFNnTpVN2/elCRly5ZNtra2cnBwUJYsWayuwWw2a968eWrTpo38/Pwsx79z544mT56s3r17W7bt0KGD6tatK0nq16+fli9frt9//z3eZwsAAADAeLZs2aIhQ4aocOHCmj9/vrJmzaoTJ05o9uzZmjdvnuzt7RUdHa3Y2FhJT3pjY2JiZGtraznGvXv3NGHCBJ06dUojRoywZIzkYLhQ26pVK8tQWRsbG2XJksUqhJ4+fVqSVL58eav9KlasGG+K6cKFCyf6vFmyZJHJZNLt27dfuG1SanB2drb8HHcdjx8/1okTJyRJnp6elvVvvPGG1V8zTpw4ob/++stqmzhhYWGqXLmyOnfurLFjx2r69OmqUqWKateurbfffvuF13Dr1i3duHEj3jVUqlRJjx8/1pkzZ5Q9e/bnXgMAAAAAY1uwYIEmT56sSpUqacaMGZZ/7+/YsUOPHz9Whw4d4u1Tr149VapUSUuXLpUkXblyRR06dNDFixc1YcIENWnSJFlrNFyodXJyUqFChZK8n9lsttx7Gyd9+vSJ3t/e3l5lypSx6il9Wnh4uD766CN99NFHSaohbrjyP7eL+6tG3F87EhIbG6tGjRpZemqfli1bNknSwIED1bp1a+3atUt79+7V2LFjNX/+fK1bty7Bcz9dw7POKcnqOp51DQAAAACMa8WKFZo0aZJ8fX01ceJEq3/3t2jRwjIqNc7OnTsVHBysWbNmWToQ79+/r/bt2+vGjRsKCAhQvXr1kr1Ow99T+09xEz49PeGSJB04cMAyQ9e/1aJFC+3evVvHjx+Pt+7LL7/UgQMHlD9//mSpwdXVVSaTSb/99ptlWVRUlNW5ixUrpj///FOFChWyvKKjozV+/HhdvnxZZ86c0ciRI5U9e3Z98MEHmj59uubPn6+wsDCdOnXquefPkSOHcuTIkeA12NnZqWDBgom6DgAAAADGc/36dY0fP1758uWTn5+fTpw4od9++83ysrOzk5ubm9UrX758kqTixYtbHv0zffp0nTt3Tm3atJGtra2OHDliOUbc6NSXZbie2hdxdnZWnTp1NHr0aJlMJhUqVEibN2/Wjh07NHXq1Ofu6+DgoLCwMN2+fVtZs2aNt7558+basWOHOnbsqD59+qh69ep69OiRNmzYoEWLFmnw4MGWx/n82xriFChQQG+//bbGjh2rMWPGKGfOnJozZ46uXLkik8kk6ckze/38/DR69Gi1adNG4eHhGj16tB49eqTChQvrwYMH2rx5sx49eqQuXbrIxsZGa9eulZOTk6WRZcyYUefOndONGzcsMzfH6dSpk7744gsVKFBA1atX15EjRxQcHKyWLVvK0dHRcp8xAAAAgNfLrl279OjRI/39998J3v86fvx4NWvW7IXH+e677yQ9mVTqn/Lly6f//e9/L13raxdqJSkwMFCBgYEaNmyYwsPDVbx4cQUFBb2wq9vf39/Sk5nQh25jY6MZM2Zo2bJlWrVqlaZMmaJ06dKpWLFiCg4OtkyW9DI1PG3s2LH69NNP1atXL5nNZjVq1Eienp6ys7OTJHl4eGj+/PmaNm2amjZtKgcHB1WtWlWDBw+Wvb297O3tNW/ePE2ZMkUtWrRQTEyMPDw8tGjRImXKlEmS1LZtW02cOFF//PGHNmzYEO/zsLe315IlSzRu3Djlzp1bH374oTp16pToawAAAABgPM2bN1fz5s2TtE+zZs3iBd2dO3dKkh4+fKiTJ0+qZMmScnBwSK4yJUkmMzc/pkmRkZH68ccfVaVKFUsAlaT69eurcePG6tmzZypWlzKOHj0qSTo3c6Bu/Xk0lasBAAAA/huyubip0axtKXqOpIbauGzg5ub2wm1fy57a14G9vb1Gjx6tSpUqqUePHrK1tdXq1at16dIlNWjQILXLAwAAAIA04bWbKOp1YTKZNHfuXN2+fVstW7ZU06ZNdfjwYS1cuNDqEToAAAAA8F9GT20aVrJkSS1cuDC1ywAAAACANIueWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGlS61CwD+yamgS2qXAAAAAPxnGP3f34RapDm1AmakdgkAAADAf0psTIxsbG1Tu4x/heHHSFOioqIUERGR2mXgNRUREaETJ07QxpAiaF9IabQxpCTaF4waaCVCLdIgs9mc2iXgNWU2mxUREUEbQ4qgfSGl0caQkmhfMDJCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUIs0x2QypXYJeE2ZTCZlyJCBNoYUQfsCACB1pEvtAoCn2dvbK0OGDKldBl5TGTJkUKlSpVK7DLymXpf2ZY6NkcnGNrXLAAAg0Qi1SHPOzR+kR1fCUrsMAPjPSZ/bWYU7T0rtMgAASBJCLdKcR1fCFHH+ZGqXAQAAAMAAuKcWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAiXblyhVVqFBB+/btS9K6q1evasCAAapcubLKlSunDh066MSJE6+iZADAa45QCwAAEuXy5cvy9/fXvXv3krTu/v378vPz08mTJzV69GhNmTJFDx48UMeOHXXt2rVXUToA4DWWLrULSEu8vb31999/W96bTCY5ODioVKlS6tOnjypWrPhSxz948KDMZrMqVKjw3O3Wrl2rVatWKTQ0VJJUrFgxdejQQfXr17eqtWnTpurVq9dL1QQAwIvExsZq3bp1mjhxYpLWxVmyZInu3LmjLVu2KFeuXJKkMmXKqFmzZtq/f78aNmyYYrUDAF5/9NT+g7+/v/bs2aM9e/Zo9+7dWrFihTJlyqTOnTvr0qVLL3Xs1q1b6/z5889cbzab1adPH02YMEG+vr5asWKFVq5cqVq1aqlfv36aO3fuS50fAIB/4/Tp0xo5cqTeffddTZo0KdHr4mzbtk3169e3BFpJypkzp3788UcCLQDgpdFT+w8ODg7KmTOn5X2uXLk0evRo1apVS99//73at2+fYuf+6quv9P3332vVqlUqXbq0ZXn37t0VExOj6dOnq2HDhsqbN2+K1QAAwD/lyZNH33//vXLnzh3vftnnrZOkx48fKywsTI0bN9bUqVO1evVq3b59W+XKldMnn3yiYsWKvarLAAC8puipTYR06Z5kf3t7e0nSo0ePNHXqVNWtW1dubm5q0qSJtm3bZtk+JCRE9erV06effqry5curR48ecnV1lSQFBARoyJAhCZ5nxYoV8vLysgq0cdq3b6/FixcrR44cCe57+PBhtWvXTuXLl1flypUVEBCg27dvW9YfOXJErVu3lqenpypWrKhevXpZep4vXrwoV1dXq3+M/HPZkCFD1Lt3b/n7+6tcuXKaN2+eJOmHH35Qs2bN5O7urnr16mnq1KmKiopK3AcLADCELFmyKHfu3EleJ0nh4eGKjo7W4sWLtW/fPn366af64osvdPv2bbVp00ZXr15NqbIBAP8RhNoXuHr1qsaMGSMHBwfVrl1bktS/f3+tW7dOI0aM0IYNG+Tj46M+ffpo+/btlv3Onz+va9euad26derXr5/27NkjSRo6dKiGDRsW7zyRkZEKDQ1VuXLlEqzD0dFRFSpUsATrpx05ckRt27ZVsWLF9M0332jatGn6/fff1alTJ8XExCgmJkZdu3ZVxYoVtWHDBi1evFiXLl3S0KFDk/RZbNu2TdWqVdOaNWvUsGFD7d69W3379lWLFi20adMmjRw5Ulu3btXHH3+cpOMCAF5fjx8/tvw8f/58eXl56a233tLcuXP14MEDLV++PBWrAwC8Dhh+/A9z5szRwoULJUnR0dGKioqSs7Ozpk6dqrx58yosLEw7duzQ7Nmz5eXlJUnq1auXTp06pdmzZ8vHx8dyrB49eqhAgQJWx3d0dJSjo2O88969e1eS5OTklOSaFy5cKFdXV40YMUKS5OzsrMDAQDVp0kR79uyRh4eHbt++rVy5cilfvnwqUKCApk6dqps3bybpPE5OTurcubPl/YABA9SiRQu1atVKklSwYEGNHj1a7du318WLF5U/f/4kXwsA4PWSMWNGSVLlypUtP0tS3rx55ezszGN9AAAvjVD7D61atVLbtm0lSTY2NsqSJYtVCD19+rQkqXz58lb7VaxYUYGBgVbLChcunOjzZsmSRSaTyWrIcGKFhoaqevXqVstKlCghR0dHnT59WrVr11bnzp01duxYTZ8+XVWqVFHt2rX19ttvJ+k8hQoVsnp/4sQJHTlyRKtXr7YsM5vNkqSwsDBCLQBAjo6OypYtW4K3pkRHRyt9+vSpUBUA4HVCqP0HJyeneOEtMcxms+Xe2zhJ+T9qe3t7lSlTRocOHUpwfXh4uD766CN99NFHqlSpUrxzP6smOzs7SdLAgQPVunVr7dq1S3v37tXYsWM1f/58rVu3LsF9Y2Ji4i375/XExsaqc+fOatq0abxtn55sCwDw31a7dm19//33unXrlrJlyyZJOnPmjM6ePav3338/lasDABgd99QmUdyETwcPHrRafuDAAbm4uLzUsVu0aKHdu3fr+PHj8dZ9+eWXOnDgQIK9n66urvHqOXXqlO7fvy9nZ2edOXNGI0eOVPbs2fXBBx9o+vTpmj9/vsLCwnTq1ClL8L1//75l/3Pnzr2w3mLFiuns2bMqVKiQ5XXlyhVNmjRJDx48SOLVAwBeVz179pTJZFKnTp20fft2bdmyRd26dVPu3LnVvHnz1C4PAGBw9NQmkbOzs+rUqaPRo0fLZDKpUKFC2rx5s3bs2KGpU6c+d18HBweFhYXp9u3bypo1a7z1zZs3144dO9SxY0f16dNH1atX16NHj7RhwwYtWrRIgwcPTvBxPh07dlTr1q01duxYtW7dWjdu3NDYsWNVqlQpVa1aVffv39fmzZv16NEjdenSRTY2Nlq7dq2cnJxUtGhRZcyYUfny5dOSJUtUuHBh3blzR9OmTZPJZHru9Xz44Yfq27evgoOD9c477+jKlSsaNmyY8ufPT08tAMCiQIECWrFihT7//HN9/PHHsrW1VbVq1TR06FBlypQptcsDABgcofZfCAwMVGBgoIYNG6bw8HAVL15cQUFBqlev3nP38/f3t/SQzp49O956GxsbzZgxQ8uWLdOqVas0ZcoUpUuXTsWKFVNwcLDq1q2b4HHLli2r+fPna+rUqXr33XeVKVMm+fj4aMCAAbKzs1PWrFk1b948TZkyRS1atFBMTIw8PDy0aNEiyz8mJk2apHHjxqlJkyYqVKiQAgIC1KVLl+deT4MGDfTFF19ozpw5mj17trJkySJvb28NHDgwkZ8kAMBoKleubJlfIinrXFxcEvz/PgAAXpbJ/KwbMoFX7OjRo5Iku/WjFHH+ZCpXAwD/PRkKllSJ4WtSuww8w8OHD3Xy5EmVLFlSDg4OqV0OXjO0L6S0pLaxuGzg5ub2wm25pxYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFjpkrrDnDlz9O677+rNN99MiXoApc/tnNolAMB/Et+/AAAjSnKonTdvnqZPn66qVauqWbNm8vHxkb29fUrUhv+owp0npXYJAPCfZY6NkcnGNrXLAAAg0ZI8/HjPnj0aP368zGazBg4cqJo1a2r06NE6cuRIStSH/5ioqChFRESkdhl4TUVEROjEiRO0MaSI16V9EWgBAEaT5J7a9OnTq3HjxmrcuLGuXLmi9evX69tvv9WKFSvk4uKiZs2aqUmTJsqWLVtK1Iv/ALPZnNol4DVlNpsVERFBG0OKoH0BAJA6XmqiqNy5c6tjx47q0aOHKlSooD/++EOTJk2Sl5eXRo0apfv37ydXnQAAAAAAxJPknto4+/fv1/r167Vt2zY9fPhQVapUUWBgoGrVqqXdu3drzJgxunTpkubOnZuc9QIAAAAAYJHkUPvFF19o48aNunz5svLkyaMOHTqoWbNmyps3r2UbX19fnT59Wl9++WWyFgsAAAAAwNOSHGoXLVokHx8fjR07VtWqVZPJZEpwOzc3N/Xt2/dl6wMAAAAA4JmSHGq7du2qBg0ayNn5+c+y8/Hx+ddFAQAAAACQGEmeKGrevHm6ePFiStQCAAAAAECSJDnUOjs76+zZsylRCwAAAAAASZLk4cd16tRRYGCgfvzxR7m6usrBwcFqvclkUs+ePZOtQAAAAAAAniXJoTY4OFiS9NNPP+mnn36Kt55QCwAAAAB4VZIcak+dOpUSdQAAAAAAkGRJDrVPCwsL071795QtWzYVLFgwuWoCAAAAACBR/lWo3bRpkyZOnKgbN25YluXIkUMDBgzQu+++m1y1AQAAAADwXEkOtf/73//08ccfq0qVKurfv79y5Miha9euacOGDQoICFCWLFnk5eWVAqUCAAAAAGAtyaF21qxZatCggb744gur5e+995769eunOXPmEGoBAAAAAK9Ekp9TGxoaqqZNmya4rmnTpkwkhZdmMplSuwS8pkwmkzJkyEAbAwAAeI0kuac2a9asunv3boLr7ty5I3t7+5cuCv9d9vb2ypAhQ2qXgddUhgwZVKpUqdQuAwZijo2VySbJf/8FAACvUJJDbdWqVRUcHKyKFSsqd+7cluWXL1/WjBkzVL169WQtEP89t7dNV/Stv1O7DAD/cemy5VPW+r1TuwwAAPACSQ61/fv313vvvae33npLnp6eypEjh27cuKHDhw/LyclJAwYMSIk68R8SfetvPb5+NrXLAAAAAGAASR5TlTNnTq1du1Zt27ZVRESEjh07poiICLVt21Zr165Vvnz5UqJOAAAAAADi+VfPqc2ePbs+/vjj5K4FAAAAAIAkSXKoDQ4OfuY6GxsbOTg4qFChQqpevTqTRgEAAAAAUlSSQ+2GDRt05coVRUVFKV26dMqSJYvu3Lmj6OhomUwmmc1mSZKLi4u+/PJLZcuWLdmLBgAAAABA+hf31Pbp00f29vYKDAzUkSNHtGfPHh09elTBwcHKmjWrpk6dqo0bN8pkMikwMDAlagYAAAAAQNK/CLVBQUHq27evfH19ZfP/n91nMpnk4+Oj3r17a9q0aSpWrJi6deumXbt2JXvBAAAAAADESXKovXz5sgoVKpTgunz58unvv588X/TNN9/U3bt3X646AAAAAACeI8mh1sXFRatWrUpw3erVq1WkSBFJ0rlz55QrV66Xqw4AAAAAgOdI8kRRvXr1Us+ePdW0aVO99dZbyp49u27cuKHt27fr9OnTmj59uk6cOKHJkyfrvffeS4maAQAAAACQ9C9CrZeXlxYsWKCgoCAFBwcrJiZG6dKlU/ny5bVkyRJVqFBB//vf//TOO++ob9++KVAyAAAAAABPJDnUSlKVKlVUpUoVRUVF6e7du8qePbtl0ihJ8vb2lre3d7IVCQAAAABAQv5VqJWkXbt26eeff9b169fVr18/nTx5UqVLl1a+fPmSsz4AAAAAAJ4pyaE2IiJCPXv21M8//6xMmTLpwYMH6tSpk77++mudOHFCy5YtU7FixVKiVgAAAAAArCR59uPAwEAdP35cixcv1i+//CKz2SxJmjhxot58801NmzYt2YsEAAAAACAhSQ61W7duVf/+/VWlShWZTCbL8ly5cql79+46ePBgshYIAAAAAMCzJDnUhoeHP/O+WScnJz18+PCliwIAAAAAIDGSHGqLFSumjRs3Jrjuf//7H/fTAgAAAABemSRPFNW9e3d99NFHunPnjurUqSOTyaRff/1VISEhWrFihaZMmZISdQIAAAAAEE+SQ62Pj48mT56sKVOmaNeuXZKkCRMmKHv27Bo1apQaNGiQ7EUCAAAAAJCQf/Wc2kaNGqlRo0Y6c+aM7ty5o8yZM6to0aKysUnyaGYAAAAAAP61JKfQdu3aKSwsTJJUtGhRlStXTi4uLrKxsdGpU6fUqFGjZC8SAAAAAICEJKqn9sCBA5bn0e7fv1+//vqrbt26FW+7H374QRcuXEjeCgEAAAAAeIZEhdpVq1Zp/fr1MplMMplMGj16dLxt4kJvw4YNk7dCAAAAAACeIVGhdvjw4XrvvfdkNpvVvn17ffLJJ3JxcbHaxsbGRpkzZ+aRPgAAAACAVyZRodbR0VGVKlWSJH355ZcqVaqUMmXKlKKFAQAAAADwIkme/bhSpUq6evWqdu/eraioKMvy2NhYRURE6MCBA/riiy+StUgAAAAAABKS5FD77bffauDAgYqOjpbJZJL05H7auJ+LFi2avBUCAAAAAPAMSX6kz+zZs1W6dGmFhISoWbNmatKkiTZv3qyPP/5Ytra2Gjp0aErUCQBAmhAbG6sFCxaoXr16cnNz09tvv61ly5ZZbRMeHq5Ro0apevXq8vT0VMuWLbV3795UqhgAgNdbkntqz549qylTpqhUqVKqXLmyFi5cKGdnZzk7O+vGjRuaPXu2qlevnhK1AgCQ6iZMmKAlS5aoVatWqlevns6fP69p06bp7Nmz8vX1VUxMjD788ENdunRJH3/8sbJnz64vv/xSXbp00apVq1SiRInUvgQAAF4rSQ61NjY2cnJykiQVKlRIZ86cUWxsrGxsbFSrVi2tXbs22YtMLG9vb/3999+W9yaTSQ4ODipVqpT69OmjihUrvtTxDx48KLPZrAoVKiS4vm3bttq/f7/lfbp06ZQ1a1ZVqVJFffv2Vf78+a1qbdq0qXr16vVSNb2Mx48fa/ny5erQoYMkKSgoSGvXrtX//ve/VKsJANKyW7duadmyZXr//fetHm+XJ08e9ejRQ2XLllVYWJiOHTumkJAQubq6SnoyH0Xjxo31008/EWoBAEhmSR5+XLRoUR06dMjyc1RUlE6dOiXpyXCrpyePSg3+/v7as2eP9uzZo927d2vFihXKlCmTOnfurEuXLr3UsVu3bq3z588/d5u3337bcv5t27Zp8uTJOn/+vFq1amV1/tWrV8vf3/+l6nlZmzZt0vjx4y3v/f39tXr16lSsCADStnPnzikmJkZ16tSxWl65cmXFxsbqyJEj2r59uypWrGgJtJL0xhtvaNu2berUqdOrLhkAgNdekkNtq1atNG3aNH3xxRdydHRUlSpVFBAQoKVLl2rKlCkqXbp0StSZaA4ODsqZM6dy5sypXLlyqXjx4ho9erQePXqk77//PsXPnz59esv58+fPr6pVq2rBggWytbVVYGCgZbts2bIpY8aMKV7P85jNZqv3GTNmVLZs2VKpGgBI+7JmzSpJ8f5IGvcHz2vXrun06dNycXHR4sWL5e3trdKlS6tZs2Y6cODAK68XAID/giSH2vfff1/Dhg2z9MiOHTtWkZGR+uyzzxQdHa1hw4Yle5EvK126J6Os7e3tJUmPHj3S1KlTVbduXbm5ualJkybatm2bZfuQkBDVq1dPn376qcqXL68ePXpY/uIeEBCgIUOGJOn8jo6Oatasmb7//nvL5+bt7a2goCBJUkREhIYNG6bq1avLzc1N7777rr777jvL/m3bttWIESP0/vvvq0KFCtqwYYOGDBmitm3bWp3n6WUXL16Uq6ur1q1bp4YNG8rd3V0tWrTQwYMHLdcYEBAgSXJ1ddW+ffsUFBQkb29vy/EuX76sgQMHqnr16vLw8FCnTp0svfJx5xsyZIgmTpyoqlWrqmzZsuratauuXr2apM8HAIyiSJEiKl++vIKCgvT999/r3r17OnHihIYNGyZ7e3tFRkbqzp07+vbbb7Vq1SoNGjRIM2fOVIYMGeTv72/1HQoAAJJHkkOtJPn5+Wnw4MGSpAIFCmjr1q36+eeftWPHDqvhVmnB1atXNWbMGDk4OKh27dqSpP79+2vdunUaMWKENmzYIB8fH/Xp00fbt2+37Hf+/Hldu3ZN69atU79+/bRnzx5J0tChQ/9VcC9evLgePXqkc+fOxVs3bdo0nT59WnPnztWWLVtUq1Yt9evXTxcvXrRss2rVKrVr105fffWVatasmejzTpgwQd26ddPatWtVtGhR+fv768KFC/L19bXMVL1nzx55enpa7Xf//n198MEHunr1qmbNmqUVK1Yoffr0atOmjdV9y5s2bdKdO3e0bNkyzZs3T8ePH9fUqVOT9uEAgIFMnz5dFSpU0EcffaQKFSqoffv2atmypZycnGRvb6/Hjx/r3r17WrBggRo0aKDatWtrzpw5ypgxo+bNm5fa5QMA8NpJ0kRRt27d0v3791WwYEGr5UuXLpWvr2+yFvZvzZkzRwsXLpQkRUdHKyoqSs7Ozpo6dary5s2rsLAw7dixQ7Nnz5aXl5ckqVevXjp16pRmz54tHx8fy7F69OihAgUKWB3f0dFRjo6OSa4rc+bMkqR79+7FW3f+/HllzJhRBQoUUObMmS2TWsVNyCVJJUuWVKNGjZJ83i5duqhhw4aSnvSq//LLL/rmm280YMAAy3XkzJkz3n4bNmzQ7du3FRISYhmSPGXKFPn4+Gj58uUaNGiQpCefx5gxY2RnZydnZ2f5+vpq165dSa4TAIwiR44cmjlzpsLDw3Xt2jUVLFhQNjY2GjlypDJlyiQHBwe5uLgod+7cln0yZcokT09PnThxIhUrBwDg9ZTontp169bJ29tbK1assFp+5coVjRs3Tt7e3tq6dWuyF5hUrVq10rp167Ru3Tpt2bJFBw4c0JYtWyy9tKdPn5YklS9f3mq/ihUrKjQ01GpZ4cKFk62uuDAbF26f9uGHH+rUqVOqWrWqPvjgA82aNUsFCxa0Cs+FChX6V+etXLmy5Wc7OzuVKVMm3nUmJDQ0VIULF7a6xzZ9+vRyd3e32r9gwYKys7OzvHd0dNTjx4//Va0AYASbN2/WqVOnlDlzZrm4uMje3l4nT55UbGysChcurIIFCyY4aWJ0dLTSp0+fChUDAPB6S1SoPXjwoIYOHaqKFSuqSZMmVuty586ttWvXqmLFihowYICOHj2aIoUmlpOTkwoVKqRChQqpQIECie5VNZvNlntv4yTnPz6OHz8uBweHBIOyp6endu3apenTp6t06dJat26dfH19tXfv3iTVEh0dHW/ZP68pJiZGNjYv/rX/cxKpOLGxsVbHjLtPGQD+K2bNmqW5c+daLVu8eLEyZcqkUqVKqUaNGjp58qTCwsIs62/fvq1Dhw7F+4MqAAB4eYkKtfPmzVOVKlU0b968BO+ZLVmypObNm6cyZcpozpw5yV5kcoqrP27CpDgHDhyQi4tLipzz/v37WrdunRo0aGDVqxln+vTpOnjwoOrWravhw4dr27ZtKlCggNXkVf9kZ2en+/fvWy3766+/4m339B8ZoqKidPz4ccsM1SaT6ZnHd3V11blz53Tz5k3LssjISB07dizFPicAMIK2bdtqy5YtmjVrln755Rd98skn2rRpk3r37i0HBwe1bt1auXPnVpcuXbRp0ybt2LFDH374oUwmE4/0AQAgBSQq1B4/flwtW7Z8/oFsbOTn56djx44lS2EpxdnZWXXq1NHo0aO1c+dOnT17VsHBwdqxY8cLnxvr4OCgsLAw3b59+5nbPHr0SNevX9f169d16dIl7dmzR126dJHZbFbfvn0T3OfChQsaOXKk9u7dq7///lvbtm3TpUuX4k3e9DQPDw+dOnVKGzZs0IULFzRjxowEhxVPnTpVO3fu1J9//qmhQ4cqIiJCLVq0sFyPJB07dkyPHj2y2q9Ro0bKkiWL+vbtqyNHjujUqVMaOHCgHj58+MK2AACvs5YtWyogIEAhISHq1q2bjh49qilTpuj999+X9OQ2k6+//loeHh4aM2aMBg4cKCcnJ3311VfKkydPKlcPAMDrJ1ETRd27d09ZsmR54XZ58uTRnTt3XrKklBcYGKjAwEANGzZM4eHhKl68uIKCglSvXr3n7ufv76/58+crLCxMs2fPTnCbrVu3Wu4tTpcunXLmzCkfHx8FBgbqzTffTHCfkSNHauLEifr44491584d5cuXTwMHDow31PtpjRs31smTJ/Xpp58qOjpab7/9ttq3b6/Dhw9bbffBBx9o4sSJunTpksqWLaulS5cqV65ckqQqVaqobNmyatWqlSZPnmy1n6Ojo5YtW6YJEyaoQ4cOkp7ch/z111/HmzwLAP5r2rdvr/bt21ste/jwoeXn3Llza8qUKa+6LAAA/pNM5mfdPPmUuMDUqlWr5273zTffaO7cuVaPxkHquHjxourWrasvv/zSarKotCxuqHTuY8v0+PrZVK4GwH+dXc4iyvnBxERv//DhQ508eVIlS5a0jIQBkhNtDCmJ9oWUltQ2FpcN3NzcXrhtooYf16lTR0uXLk1wNsc4kZGRWrp0qWECFAAAAADA+BIVajt06KBbt26pQ4cOCd4ze/z4cXXq1EkXL1584X2pAAAAAAAkl0TdU5srVy4FBwerX79+ev/995U9e3blz59fMTExunz5sm7evKns2bMrODhYzs7OKV0zEiF//vyWZ/ICAAAAwOsqUaFWejJJ0MaNG7V27Vrt2bNHV65cka2trdzc3FSjRg01adJEmTJlSslaAQAAAACwkuhQK0lOTk7q0KGDZTZcAAAAAABSU6LuqQUAAAAAIC0i1AIAAAAADItQCwAAAAAwLEItAAAAAMCwkhxqf/31Vz148CDBdeHh4dq8efNLFwUAAAAAQGIkOdS2a9dOYWFhCa47ceKEAgICXrooAAAAAAASI1GP9Bk8eLAuX74sSTKbzRo1alSCz6Q9d+6ccuTIkbwVAgAAAADwDInqqa1fv77MZrPMZrNlWdz7uJeNjY08PDw0fvz4FCsWAAAAAICnJaqn1tvbW97e3pKktm3batSoUXJ2dk7RwgAAAAAAeJFEhdqnLV26NCXqAAAAAAAgyZIcah89eqRZs2bphx9+UEREhGJjY63Wm0wmbd++PdkKBAAAAADgWZIcaj/77DOtXr1alSpVUsmSJWVjw6NuAQAAAACpI8mh9rvvvlO/fv3UpUuXlKgHAAAAAIBES3I36+PHj+Xu7p4StQAAAAAAkCRJDrU1atTQ7t27U6IWAAAAAACSJMnDj319fTVy5EjdunVLZcuWVYYMGeJt8+677yZHbQAAAAAAPFeSQ23fvn0lSevWrdO6devirTeZTIRaAAAAAMArkeRQu2PHjpSoAwAAAACAJEtyqM2XL5/V+8jISNnb28tkMiVbUQAAAAAAJEaSQ60knTlzRtOnT9fPP/+s+/fva9WqVVq9erWKFi2qtm3bJneNAAAAAAAkKMmzH588eVLNmzfX8ePH1ahRI5nNZkmSra2txo0bp7Vr1yZ7kQAAAAAAJCTJPbUTJ05UmTJltHDhQknS8uXLJUnDhw9XZGSkvvzySzVt2jR5qwQAAAAAIAFJ7qn97bff1KFDB6VLly7efbS+vr46d+5cctUGAAAAAMBzJTnUvvHGG3r06FGC6+7cuSN7e/uXLgoAAAAAgMRI8vDj6tWra/r06SpXrpxy5swp6cmzaR88eKCFCxeqWrVqyV4k/lvSZcv34o0AIIXxXQQAgDEkOdR+/PHHatmypRo0aKASJUrIZDJpwoQJOnv2rMxmswIDA1OiTvyHZK3fO7VLAABJkjk2ViabJA9qAgAAr1CS/586T548Wr9+vdq3by+z2ayCBQvq4cOHatiwoUJCQlSgQIGUqBP/EVFRUYqIiEjtMvCaioiI0IkTJ2hjSDQCLQAAaV+Se2pv3bqlbNmyqV+/filRD2B5TBSQ3MxmsyIiImhjAAAAr5Ek/wm6Vq1a6t69u7799ltFRUWlRE0AAAAAACRKkkPtwIEDdfPmTfXt21fVq1fX8OHDdeDAgZSoDQAAAACA50ry8OMOHTqoQ4cOunDhgjZt2qQtW7Zo9erVyps3rxo3bqxGjRrJ2dk5JWoFAAAAAMDKv54Bo0CBAurevbs2btyojRs3ysvLS/PmzVPDhg2Tsz4AAAAAAJ4pyT21T7t586a2bt2qrVu36vDhw8qSJYt8fX2TqzYAAAAAAJ4ryaH23r172rZtmzZv3qxff/1Vtra28vb21syZM1WzZk3Z2tqmRJ0AAAAAAMST5FBbtWpVxcbGqnz58ho1apQaNGigTJkypURtAAAAAAA8V5JDba9evdSoUSPlzZs3JeoBAAAAACDRkjxRVNeuXZ8ZaB89eqRTp069dFEAAAAAACRGokJtjRo1dPLkSatlixYt0q1bt6yWnT59Wk2bNk2+6gAAAAAAeI5EhdobN27o8ePHlvcxMTGaNGmSLl++nGKFAQAAAADwIv/6ObVmszk56wAAAAAAIMn+dagFAAAAACC1EWoBAAAAAIZFqAUAAAAAGNZLhVqTyZRcdQAWtCukFJPJpAwZMtDGAAAAXiPpErthz549ZW9vb7WsW7dusrOzs7yPiopKvsrwn2Rvb68MGTKkdhl4TWXIkEGlSpVK7TJSldkcK5OJQToAAOD1kahQy7Nn8SrdP7pFMQ9uvXhDAElimzGbMrn5pnYZAAAAySpRoXb8+PEpXQdgEfPglmLuXUvtMgAAAAAYAGPQAAAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABhWutQuAACQOvbt26d27do9c32vXr300UcfWd5HR0erdevWqlmzpnr16vUqSgQAAHghQi0A/EeVLl1aK1eujLd86tSpOnr0qN555x3LssjISA0aNEi///67atas+SrLBAAAeK5UH37s7e0tV1dXLVq0KMH1n3zyiVxdXRUUFPRS52nbtq2GDBlief/DDz/ozz//lPSkt8LV1VUXL158qXP8G998841cXV01bty4RG2flFovXrwoV1dX7du372XLBPAaypQpkzw8PKxeN2/e1N69e/XZZ5+pSJEikqQDBw7o/fff1y+//JLKFQMAAMSX6qFWkuzs7LRt27Z4y6Ojo/Xdd9/JZDK99DmCgoI0bNgwSdLff/+tbt266ebNm5IkT09P7dmzR3ny5Hnp8yRVSEiIihQponXr1ikyMjJZj50nTx7t2bNHnp6eyXpcAK+nR48e6dNPP5WXl5caNGhgWd69e3flzZtXISEhqVgdAABAwtJEqK1atap+++03XblyxWr5L7/8IgcHh2QJm1myZJGjo6MkyWw2W62zt7dXzpw5ZWtr+9LnSYqwsDAdPnxYAwcOVHh4uLZu3Zqsx7e1tVXOnDllb2+frMcF8Hr68ssvdfXqVQ0dOtRq+bJlyzR79mzly5cvlSoDAAB4tjQRat3d3ZU3b159++23Vsu3bNmit99+O15P7apVq9SoUSO5u7vLw8NDrVu31tGjRy3rvb29NXHiRPn6+qpy5crav3+/ZfjxxYsXVbduXUlSu3btFBQUFG9Ir7e3t+bOnasuXbqobNmy8vb21vbt27V9+3bVr19fHh4e6tSpk6WnV3oSUD/88EN5enqqRo0aGjBggK5fv/7c6w4JCZGTk5Pq1KmjcuXKacWKFfG2iRv25+7ursaNG+vUqVNW+7u5uSk8PNxqHx8fH33xxRfxhh+fO3dOnTp1Uvny5eXp6alOnTrp9OnTlv3u3Lmj0aNHq3bt2nJ3d1erVq2shi4HBQWpTZs26tevn8qVK6eRI0eqatWqCg4Otjr/ihUrVKNGDUVHRz/3+gGkHVFRUfryyy/l6+urQoUKWa1zdXVNpaoAAABeLE2EWkl6++23rUJtVFSUtm/fbjVRiSR9//33GjNmjDp37qytW7dq8eLFioyM1PDhw622W7ZsmYYPH6758+fLw8PDsjxPnjxatWqVpCchzd/fP8F6Zs6cKV9fX23cuFElSpTQoEGDNHv2bE2ePFmzZ8/W0aNHNW/ePEnS1atX1bp1axUqVEirV6/W7Nmzdf/+fbVs2VIPHz5M8PgxMTFav369fHx8ZGtrK19fXx0+fNgqtF64cEH+/v4qWbKk1q5dq549e2rmzJmW9Q0aNFC6dOmshm4fOnRIFy5cULNmzeKds3///nrzzTe1Zs0arVq1SjY2NpaZTWNiYuTv768DBw5o8uTJCgkJUfHixdWpUycdOXLEcoxff/1VOXLk0Pr169WxY0c1btxYGzZssDrPunXr1LhxY6VLxzxkgFFs27ZN169fV+fOnVO7FAAAgCRJU6H2t99+09WrVyVJP/30k7Jly6ZSpUpZbZclSxZ99tlnatKkifLlyycPDw81b95coaGhVtvVrl1b1apVk5ubm9XwW1tbW2XLlk2S5OTkpIwZMyZYj5eXl959910VLFhQLVq00IMHD9SvXz+5u7urSpUqqlatmv744w9J0tdff63cuXNr+PDhcnZ2VpkyZTR16lTdvHkzXu9znN27d+v69euW0N6gQQPZ2tpazUT6zTffKEeOHBo5cqScnZ1Vv359de/e3bLewcFBDRo00MaNGy3LNm7cqHLlysXraZGk8+fPK1u2bMqXL59cXFw0btw4ffrpp4qNjdWePXt0/PhxTZkyRZUqVZKLi4tGjx6tYsWKacGCBVbH6d27twoUKKDChQvrvffe019//aXDhw9Lks6ePavDhw8nGKoBpF3btm1TsWLFVKJEidQuBQAAIEnSTKgtU6aMChQoYOl13LJlS7xeWkmqWLGiSpcurRkzZmjAgAFq3ry5xo0bp9jYWKvtEgp1SfH0/hkyZJAkFSxY0LIsffr0ioqKkiSdOHFCf/zxhzw9PS2vatWqKTIyUmFhYQkef82aNcqePbuqVKkiScqRI4eqVKmiDRs2WHp3Q0NDVapUKat7fcuVK2d1nGbNmunXX3/V1atX9fjxY23duvWZgbJfv35atGiRKleurG7duum7775TiRIlZGNjo9DQUDk6Oqp48eKW7U0mkypUqGD1B4Ps2bNb7k2WpOLFi8vNzU3r1q2T9KSX1t3dXS4uLs/4ZAGkNY8fP9aePXusJocCAAAwijQ1PjRuCHLLli21Y8cOyzDhp23cuFFDhgxRo0aNVK5cObVq1UqhoaEaM2aM1Xbp06d/qVoSGjr7rFmYY2NjVaVKFY0cOTLeuqcDYJxbt25p586devz4sdzc3KyOYzabtWnTJrVo0UImkyleWP9nXRUqVFC+fPm0adMmFS1aVI8ePdLbb7+dYJ1+fn5q0KCBdu3apb1792r69OmaNWuW1q1bF2/yrDhms9nqnAl9ru+9956++OILDRs2TBs3bmT4ImAwoaGhioiIUPny5VO7FAAAgCRLMz210pNQe+jQIa1Zs0YFChSQs7NzvG3mzp2r5s2ba8KECfLz81PFihV14cIFSfFnNX6W5HhE0NOKFSumsLAw5cmTR4UKFVKhQoXk5OSkcePGxRsWLUkbNmzQ48ePNWPGDK1bt87qlS1bNsuEUSVKlNCxY8csPcKSdOzYsXjX0rRpU3333XfavHmzfHx8lClTpnjnvHnzpsaMGaPHjx+rWbNmmjx5sjZs2KDr169r//79cnV11b1796zqNZvNOnjw4At7XRs2bKjIyEgtWrRIN27cUMOGDZP0+QFIXXH/3Sf0nQsAAJDWpalQW7JkSRUqVEhTpkxJcOix9GSip0OHDun48eM6f/68Fi9erGXLlkmSVfh7HgcHB0lP/iF37969l667devWunfvngYOHKhTp07p1KlT6tevn44ePWo1nDfOmjVr5OnpKR8fHxUvXtzyKlGihFq3bq3jx4/r6NGj+uCDDxQREaGhQ4cqLCxMP/zwg4KCguIdr2nTpjp69Kh27NjxzKHHTk5O2rlzp4YPH66TJ0/qwoULWrFihezs7FSmTBnVqFFDJUuW1IABA7R//36FhYVpzJgxCg0NVfv27Z97/Y6OjqpXr55mzpypunXrKnPmzP/ugwSQKm7cuCHpyfcEAACA0aSpUCs96a29f/++fH19E1w/YsQI5ciRQ23atNH777+vH374QZMmTZIkq8f6PE/WrFn13nvvadKkSZo2bdpL11ygQAEtW7ZMDx480AcffKA2bdrIzs5OX375pWVSqjjHjh1TaGio/Pz8EjxW69at9cYbb2jFihV68803tWTJEl25ckVNmzbVhAkTrCaKipM3b15VqlRJTk5Olnt0/yldunSaN2+ebGxs1KFDB73zzjv6+eefNXfuXBUsWFC2trZauHChSpUqpY8++kjvvfee/vjjDy1evNhq9uhnadasmR49esQEUYABffjhhzp9+rTeeOONF257+vRp9erV6xVUBQAAkDgmc2LH7ALPERISoqCgIO3YsUM2Nv/ubyVxf5Qo+OB3xdy7lpzlAZBk65hLTlXapHYZr62HDx/q5MmTKlmypGVEEJCcaGNISbQvpLSktrG4bPD0HETPkqYmioLxHD9+XGfOnNH06dPVpk2bfx1oAQAAAODfIIHgpfz2228aPny4ypYt+8J7bwEAAAAgudFTi5fi5+f3zPuDAQAAACCl0VMLAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAw0qX2gUA/2SbMVtqlwC8lvhvCwAAvI4ItUhzMrn5pnYJwGvLbI6VycQgHQAA8PrgXzZIU6KiohQREZHaZeA1FRERoRMnTvyn2xiBFgAAvG741w3SHLPZnNol4DVlNpsVERFBGwMAAHiNEGoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFmmOyWRK7RIAAAAAGAShFmmKvb29MmTIkNplpGlmszm1SwAAAADSjHSpXQDwT1HX/1Ts44jULiNNsrHLIPucLqldBgAAAJBmEGqR5sQ+jpA56mFql5EmxaZ2AQAAAEAaw/BjAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFngNxMbG6uuvv1ajRo3k6empunXraty4cbp//36C2y9ZskSurq66ePHiK64UAAAASF7pUrsAAC9v/vz5mjp1qjp16qSqVavq7Nmzmj59uv744w8tXLhQJpPJsu3Zs2cVGBiYitUCAAAAySfVe2q9vb3l6uqqRYsWJbj+k08+kaurq4KCgl7qPG3bttWQIUMs73/44Qf9+eefkqR9+/alWq/VN998I1dXV40bNy7Zj+3q6qqQkJBnrh8yZIjatm2brOf8448/tHPnzmQ9Jp4vNjZW8+bNU8uWLTVgwABVq1ZNfn5+GjlypH7++WcdO3bMsm1MTIwCAgKUJUuW1CsYAAAASEapHmolyc7OTtu2bYu3PDo6Wt99951VL9O/FRQUpGHDhkmS/v77b3Xr1k03b96UJHl6emrPnj3KkyfPS58nqUJCQlSkSBGtW7dOkZGRyXrsPXv2yNfXN1mP+SJdu3bV0aNHX+k5/+vu37+vJk2aqGHDhlbLixYtKkm6cOGCZdmCBQt048YNdenS5ZXWCAAAAKSUNBFqq1atqt9++01XrlyxWv7LL7/IwcEhWcJmlixZ5OjoKEkym81W6+zt7ZUzZ07Z2tq+9HmSIiwsTIcPH9bAgQMVHh6urVu3Juvxc+bMqfTp0yfrMZH2ZM6cWcOHD1f58uWtlm/fvl2S5OLiIulJL3pwcLDGjRunDBkyvPI6AQAAgJSQJkKtu7u78ubNq2+//dZq+ZYtW/T222/H66ldtWqVGjVqJHd3d3l4eKh169ZWvYPe3t6aOHGifH19VblyZe3fv98y/PjixYuqW7euJKldu3YKCgqKN/zY29tbc+fOVZcuXVS2bFl5e3tr+/bt2r59u+rXry8PDw916tTJ0tMrPQmoH374oTw9PVWjRg0NGDBA169ff+51h4SEyMnJSXXq1FG5cuW0YsWKeNv89ddf6t69u8qXL6/KlSurf//+VufdsGGDGjduLHd3d9WtW1dLliyxrHt6+LHZbNbMmTNVq1YteXh4KCAgIF7P8NWrV9WvXz9VqFBBlStXVrdu3XTu3DnL+iFDhmjIkCGaOHGiqlatqrJly6pr1666evWq5XP7+++/FRwcnOzDmpE0v//+u+bOnas6deqoePHiio6O1uDBg/X++++rUqVKqV0eAAAAkGzSRKiVpLffftsq1EZFRWn79u165513rLb7/vvvNWbMGHXu3Flbt27V4sWLFRkZqeHDh1ttt2zZMg0fPlzz58+Xh4eHZXmePHm0atUqSU+GJPv7+ydYz8yZM+Xr66uNGzeqRIkSGjRokGbPnq3Jkydr9uzZOnr0qObNmyfpSRhs3bq1ChUqpNWrV2v27Nm6f/++WrZsqYcPHyZ4/JiYGK1fv14+Pj6ytbWVr6+vDh8+rFOnTlm2CQ8Pl5+fn6KiorRkyRItWrRI58+fV9++fSU9Cf2DBw9WkyZNtGHDBvXv31+ff/55gvfRzp07V/Pnz9egQYMUEhKizJkza8uWLZb1Dx8+tATRZcuWaenSpcqaNatatGhhCa2StGnTJt25c0fLli3TvHnzdPz4cU2dOlWStHr1auXOnVv+/v4vfQ80/r2DBw+qc+fOyp8/v8aPHy9Jmj17tsLDwzVgwIBUrg4AAABIXmkq1P7222+WAPXTTz8pW7ZsKlWqlNV2WbJk0WeffaYmTZooX7588vDwUPPmzRUaGmq1Xe3atVWtWjW5ubnJ3t7estzW1lbZsmWTJDk5OSljxowJ1uPl5aV3331XBQsWVIsWLfTgwQP169dP7u7uqlKliqpVq6Y//vhDkvT1118rd+7cGj58uJydnVWmTBlNnTpVN2/ejNf7HGf37t26fv26JbQ3aNBAtra2WrlypWWbLVu26MGDBwoMDFSZMmVUqlQpffrpp/Lw8LAEXV9fX3Xq1EmFCxfWO++8oxEjRsQbcmw2m7V06VK1a9dODRs2VNGiRRUQEKCSJUtattm8ebPCw8M1efJklShRQsWLF9dnn32mTJky6ZtvvrFs5+joqDFjxsjZ2VmVKlWSr6+vDh06JEnKli2bbG1t5eDgwEREqWTLli3q2LGj8uTJo8WLFytr1qw6ceKEZs+erbFjx8re3l7R0dGKjY2V9GSSqZiYmFSuGgAAAPj30swjfcqUKaMCBQpo27ZtateunbZs2RKvl1aSKlasqLCwMM2YMUNnzpzRX3/9pdOnT1v+kR6nUKFCL1XP0/vH3X9YsGBBy7L06dNbhgGfOHFCf/zxhzw9Pa2OERkZqbCwsASPv2bNGmXPnl1VqlSRJOXIkUNVqlTRhg0b9PHHH8vBwUGhoaEqXLiwnJycLPuVKFFCJUqUkCSFhobG+4xatGgR71y3b9/W9evX5ebmZrXcw8PDUt+JEyd09+5dVaxY8bnXULBgQdnZ2VneOzo66vHjxwleI16tBQsWaPLkyapUqZJmzJhhuYd8x44devz4sTp06BBvn3r16qlSpUpaunTpK64WAAAASB5pJtRK/zcEuWXLltqxY4dlmPDTNm7cqCFDhqhRo0YqV66cWrVqpdDQUI0ZM8Zqu5edIClduvgfzbNmYY6NjVWVKlU0cuTIeOvigsXTbt26pZ07d+rx48dWQTM2NlZms1mbNm1SixYtEqzhRTUmJK7uf06Q9fT+sbGxKlKkiGbNmhVvfwcHB8vPT/d6I+1YsWKFJk2aJF9fX02cONHq99SiRQt5eXlZbb9z504FBwdr1qxZKly48KstFgAAAEhGaWb4sfQk1B46dEhr1qxRgQIF5OzsHG+buXPnqnnz5powYYL8/PxUsWJFyyNL/hnaniU5HhH0tGLFiiksLEx58uRRoUKFVKhQITk5OWncuHHxhkVLTyZ3evz4sWbMmKF169ZZvbJly2aZMMrFxUXnzp3TvXv3LPseP35cVatW1ZUrV+Ts7Bzv8Tnjx49X7969rZZlzZpVefLk0cGDB62WP/380uLFi+vSpUtydHS0XEPevHk1ZcoU/frrry/9GSHlXL9+XePHj1e+fPnk5+enEydO6LfffrO87Ozs5ObmZvXKly+fpCe/97hH/wAAAABGlKZCbcmSJVWoUCFNmTIlwaHH0pOJng4dOqTjx4/r/PnzWrx4sZYtWybpyeRSiRHX8xgaGmoVGP+t1q1b6969exo4cKBOnTqlU6dOqV+/fjp69KiKFy8eb/s1a9bI09NTPj4+Kl68uOVVokQJtW7dWsePH9fRo0fVqFEjOTk56eOPP9apU6d07NgxjRw5UsWLF1fu3LnVpUsXbdmyRUuXLtX58+e1ceNGff311/L29o53zg8//FDLly/XqlWrdPbsWU2dOlVHjhyxrG/cuLGcnJzUu3dv/f777woLC9OQIUO0e/duubq6JvqzyJgxo86dO6cbN278uw8TSbZr1y49evRIf//9t/z8/NSyZUur186dO1O7RAAAACDFpKlQKz3prb1//758fX0TXD9ixAjlyJFDbdq00fvvv68ffvhBkyZNkqR4vZbPkjVrVr333nuaNGmSpk2b9tI1FyhQQMuWLdODBw/0wQcfqE2bNrKzs9OXX35pmZQqzrFjxxQaGio/P78Ej9W6dWu98cYbWrFihTJkyKAFCxYoOjparVq1UufOneXi4mKZbdjb21tjxozR8uXL5evrq+DgYAUEBOjdd9+Nd1w/Pz99/PHHmjVrlpo0aaI//vhDzZs3t6x3dHTUsmXLlDVrVnXq1EnNmzfX1atXtXDhwgR7zJ+lbdu22rlz5zNnlUbya968uU6fPv3MV7NmzeLt06xZM50+fVr58+dPhYoBAACA5GMyJ3bMLpDC4v4oUSy7ZI5K+FFI/3Umewelz+v24g2RoIcPH+rkyZMqWbKk1b3iQHKgfSGl0caQkmhfSGlJbWNx2eCfk90mJM311AIAAAAAkFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFjpUrsA4J9s7DIoNrWLSKNs7DKkdgkAAABAmkKoRZpjn9MltUtI08xms0wmU2qXAQAAAKQJDD9GmhIVFaWIiIjULiNNI9ACAAAA/4dQizTHbDandgkAAAAADIJQCwAAAAAwLEItAAAAAMCwCLUAAAAAAMMi1AIAAAAADItQCwAAAAAwLJOZqWaRRhw6dEhms1l2dnY8tgYpwmw26/Hjx7QxpAjaF1IabQwpifaFlJbUNhYVFSWTyaRy5cq9cNt0yVEgkBziGjdfpEgpJpNJ9vb2qV0GXlO0L6Q02hhSEu0LKS2pbcxkMiU6F9BTCwAAAAAwLO6pBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoRaqLjY3V9OnTVbNmTXl4eOjDDz/UhQsXUrssGNjVq1fl6uoa7xUSEiJJOnnypNq0aSMPDw95e3vryy+/TOWKYRRz5sxR27ZtrZa9qD3xHYekSKiNDR8+PN73mbe3t2U9bQzPc+fOHX3yySeqVauWypUrpw8++EAHDhywrN+7d6+aNWumsmXLqkGDBtq8ebPV/pGRkRo9erSqVq0qT09PDRgwQLdu3XrVl4E06kXtq2PHjvG+v57+jku29mUGUllQUJC5cuXK5h9++MF88uRJs7+/v/mtt94yR0ZGpnZpMKidO3ea3dzczFevXjVfu3bN8oqIiDDfunXLXLlyZXNAQID5zz//NK9evdrs5uZmXr16dWqXjTRu2bJl5hIlSpjbtGljWZaY9sR3HBIroTZmNpvNzZs3NwcGBlp9n928edOynjaG5+nYsaO5YcOG5l9//dV85swZ8+jRo83u7u7msLAw859//ml2c3MzBwYGmv/880/z/PnzzaVKlTL//PPPlv2HDBli9vHxMf/666/m33//3fzuu++a/fz8UvGKkJY8r32ZzWZz1apVzV999ZXV99ft27ct+ydX+yLUIlVFRkaaPT09zcuXL7csu3v3rtnd3d28cePGVKwMRjZ37lxzo0aNElw3e/Zsc40aNcyPHz+2LJsyZYr5rbfeelXlwWCuXLli7tq1q9nDw8PcoEEDq8DxovbEdxwS43ltLDY21uzh4WH+7rvvEtyXNobnOXfunLl48eLmAwcOWJbFxsaafXx8zFOnTjWPGDHC3Lx5c6t9+vfvb/b39zebzU/aZokSJcw7d+60rD9z5oy5ePHi5kOHDr2ai0Ca9aL2dePGDXPx4sXNx48fT3D/5GxfDD9Gqjp16pQePHigqlWrWpZlzpxZpUqV0q+//pqKlcHITp8+LWdn5wTXHThwQJUqVVK6dOksy6pUqaJz587pxo0br6pEGMjx48dlZ2enDRs2qGzZslbrXtSe+I5DYjyvjZ0/f14PHz5U0aJFE9yXNobnyZo1q+bOnSs3NzfLMpPJJJPJpPDwcB04cMCq7UhPvsMOHjwos9msgwcPWpbFKVKkiN58803aF17Yvk6fPi2TyaQiRYokuH9yti9CLVLVlStXJEl58uSxWp4rVy7LOiCpQkNDdevWLfn5+alatWr64IMPtHv3bklP2lzu3Lmtts+VK5ck6fLly6+8VqR93t7eCgoKUoECBeKte1F74jsOifG8NhYaGipJWrp0qby9veXj46MxY8bo3r17kvj/UTxf5syZVbt2bdnb21uWbdu2TX/99Zdq1qz5zO+wiIgI3b59W1evXlXWrFn1xhtvxNuG9oUXta/Q0FA5OjpqzJgxqlWrlho0aKCpU6cqKipKkpK1fRFqkaoiIiIkyeo/Bkl64403FBkZmRolweCio6N15swZ3b17V7169dLcuXPl4eGhLl26aO/evXr06FGC7U0SbQ5J9qL2xHccXlZoaKhsbGyUK1cuzZ49W0OGDNGePXvUo0cPxcbG0saQJIcOHVJAQIDeeusteXl5JfgdFvc+KipKERER8dZLtC8k7J/tKzQ0VJGRkXJ3d9f8+fPVvXt3rVq1SsOHD5ekZG1f6V68CZBy0qdPL+nJF2fcz9KTfwxmyJAhtcqCgaVLl0779u2Tra2tpU2VKVNGf/zxhxYsWKD06dNb/kIYJ+6L08HB4ZXXC2N7UXviOw4vq3v37mrdurWyZs0qSSpevLhy5sypFi1a6OjRo7QxJNr27ds1cOBAlStXTp9//rmkJ+Hhn99hce8zZMiQ4HecRPtCfAm1rzFjxmjw4MFycnKS9OT7y87OTv369dOgQYOStX3RU4tUFTdc6tq1a1bLr127pjfffDM1SsJrIGPGjFb/uJOkYsWK6erVq8qdO3eC7U0SbQ5J9qL2xHccXpaNjY0l0MYpVqyYpCdDj2ljSIxly5apV69eqlOnjmbPnm0ZUZInT54E246Dg4McHR2VO3du3blzJ17woH3hac9qX+nSpbME2jhPf38lZ/si1CJVlShRQpkyZdK+ffssy8LDw3XixAlVrFgxFSuDUf3xxx8qV66cVZuSpGPHjsnFxUUVK1bUwYMHFRMTY1n3yy+/qEiRIsqePfurLhcG96L2xHccXtagQYPUoUMHq2VHjx6VJLm4uNDG8EJfffWVxo4dKz8/PwUGBloN96xQoYL2799vtf0vv/yicuXKycbGRuXLl1dsbKxlQh9JOnv2rK5evUr7gqTnt6+2bdsqICDAavujR4/Kzs5OhQsXTtb2RahFqrK3t1ebNm30+eefa8eOHTp16pT69eun3Llz66233krt8mBAzs7OKlq0qMaMGaMDBw4oLCxM48eP12+//abu3bvrvffe0/379zVs2DD9+eefCgkJ0eLFi9W1a9fULh0G9KL2xHccXlb9+vW1d+9eBQcH6/z589q1a5eGDh2qhg0bytnZmTaG5zp79qzGjRunevXqqWvXrrpx44auX7+u69ev6969e2rbtq2OHDmizz//XGFhYVq4cKG+/fZbde7cWdKTESfvvPOOhg8frn379unIkSPq37+/KlWqJA8Pj9S9OKS6F7Wv+vXra/369fr666914cIFbdmyRZMmTVKnTp2UKVOmZG1fJrPZbE6ZywQSJyYmRoGBgQoJCdGjR49UsWJFffLJJ8qfP39qlwaDunHjhqZMmaIff/xR4eHhKlWqlAYOHKgKFSpIko4cOaLPPvtMJ06cUM6cOeXv7682bdqkctUwgiFDhujvv//W0qVLLcte1J74jkNSJNTGtm7dqrlz5+rMmTNydHRUo0aN1LdvX8sQP9oYnmX27Nn64osvElzXtGlTTZgwQbt379bkyZN17tw55c+fX7169ZKvr69lu4cPH2rcuHHatm2bJKlWrVoaPnx4vGHx+O9JTPtavny5li9frgsXLljmA+jSpYtsbJ70rSZX+yLUAgAAAAAMi+HHAAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAPCK8URFAEg+hFoAANKQtm3bqlSpUjp69GiC6729vTVkyJBXUsuQIUPk7e39Ss6VFNHR0RoyZIg8PT1Vrlw5/fLLL/G2uXjxolxdXZ/7+vrrr1957eHh4Ro0aJAOHDjwys8NAK+rdKldAAAAsBYTE6OAgACFhITI3t4+tctJc3788UetXbtWPXr0ULVq1VSqVKlnbtu9e3d5eXkluK5AgQIpVOGznTx5UuvXr9d77733ys8NAK8rQi0AAGmMo6Oj/vjjD82YMUP9+vVL7XLSnDt37kiSmjVr9sJgWrBgQXl4eKR8UQCAVMPwYwAA0piSJUvq3Xff1fz583Xs2LHnbuvq6qqgoCCrZUFBQXJ1dbW8HzJkiDp16qSVK1fKx8dH7u7uatWqlc6ePasffvhBjRo1UtmyZfX+++/r5MmT8c6xcuVKeXl5yd3dXe3bt9eJEyes1l+6dEn9+/dXpUqVVLZs2XjbxA0FXrRokRo0aKCyZctqzZo1CV5PTEyMli9frkaNGsnd3V1eXl76/PPPFRkZabmWuOHXPj4+atu27XM/nxeJjIxU+fLlNXHiRKvl0dHRqlKlij799FPLslWrVumdd95RmTJl5OXlpaCgIMXExFjWDxkyRB06dNCaNWtUv359lSlTRk2aNNHu3bslSfv27VO7du0kSe3atbPUfv78eXXr1k2VK1dW2bJl1bJlS+3ateulrgsA/ksItQAApEFDhw5V1qxZFRAQoKioqJc+3uHDh7Vs2TINGTJE48ePV1hYmLp06aLx48era9euCgwM1OXLlzVw4ECr/a5cuaLg4GD17dtXgYGBunv3rtq2batLly5Jkm7duqVWrVrp+PHjGjFihKZMmaLY2Fj5+fkpLCzM6lhBQUH68MMPNWnSJFWvXj3BOj/55BONHz9ePj4+mjVrlvz8/LRs2TL16NFDZrNZPXr0UPfu3SVJwcHBGjly5HOvOzY2VtHR0fFecWH0jTfeUP369bV161aryZt++ukn3b59W02aNJEkzZkzRyNGjFDVqlU1e/Zs+fn5ad68eRoxYoTV+Y4dO6YFCxaod+/emjFjhmxtbdWrVy/dvXtXpUuX1ieffGK5zpEjRyo2NlZdu3ZVRESEJk2apJkzZypLlizq3r27/vrrr+deGwDgCYYfAwCQBjk5OWnMmDHq3r17sgxDfvDggaZOnSpnZ2dJ0v79+7VixQotXrxYVatWlST99ddfmjhxosLDw5U5c2ZJT3pOZ8yYIXd3d0lS2bJl5ePjo6VLl2rw4MFasmSJ7ty5o6+//lr58uWTJNWqVUu+vr6aNm2apk+fbqnh7bfffu69pH/++adWr16tAQMGqEuXLpKk6tWrK1euXBo0aJB2796t2rVrq2DBgpKe9Gjnz5//udc9bNgwDRs2LN5yBwcHHT58WJLUpEkTrVmzRgcPHlSFChUkSZs3b1bRokXl5uame/fuaebMmWrZsqWGDx8uSapRo4ayZMmi4cOHq2PHjipWrJgk6d69ewoJCbHU6ODgoDZt2uiXX35R/fr15eLiIklycXGRi4uLrl+/rjNnzqhHjx6qXbu2JMnd3V3BwcHJ8scMAPgvINQCAJBGeXt7q3Hjxpo/f77eeustlS5d+l8fy8nJyRJoJSlHjhySnoTUOFmyZJEkq1BboEABS6CVpJw5c8rDw0O//vqrJGnv3r0qWbKk3nzzTUVHR0uSbGxsVKtWLW3YsMGqhpIlSz63xv3790uS3nnnHavl77zzjgICArRv3z5L8Eusjz76KMGJomxtbS0/V6pUSXnz5tXmzZtVoUIFRUZGavv27ZZgffjwYT169Eje3t6Wa5RkmRn6p59+soTabNmyWQKtJOXOnVuSFBERkWB9OXLkkIuLi0aMGKE9e/aoRo0aqlWrlgICApJ0nQDwX0aoBQAgDRs+fLj27t2rgICAZ96HmhiZMmVKcLmDg8Nz94sLv0/Lnj27Ll++LOnJpE1//fXXMwP302HuRee6e/eupCfB+Wnp0qVT1qxZde/evefun5B8+fLJzc3tuduYTCY1atRIq1at0vDhw/XDDz/o4cOHatSokaT/m5gqLuT+07Vr1yw/Z8iQId6xpSfDoJ917oULF2rWrFn6/vvvtW7dOtnZ2cnHx0ejR4+Wk5NToq4TAP7LCLUAAKRhTk5OGjVqlHr27KmZM2cmuM3TkxVJ0sOHD5Pt/HFB82nXr19XtmzZJD2ZqblSpUoaNGhQgvsn5ZFEcQHu+vXrlqHMkvT48WPdvn1bWbNmTUrpSdKkSRPNmTNH+/bt05YtW1SxYkVLDXG91p9//rkKFy4cb9+Egn9SvPnmmxo1apRGjhypU6dO6dtvv9W8efOUNWvWF94zDABgoigAANI8Hx8fNWzYUHPnztWtW7es1mXKlElXr161Wnbo0KFkO/fZs2d1/vx5y/vLly/r8OHDqly5sqQnQ3fPnj2rIkWKyM3NzfJav369Vq9ebTXM90UqVaok6cn9rE/bvHmzYmJiVL58+WS4ooQ5OzurdOnS2rx5s3bt2qXGjRtb1pUtW1Z2dna6evWq1TWmS5dOgYGBunjxYqLP88/P4/Dhw6pWrZqOHDkik8mkkiVLql+/fipevLhlMi4AwPPRUwsAgAGMGDFCv/zyi27cuGG13MvLS5s3b1bZsmVVqFAhhYSEJOusuW+88Ya6d++ufv36KSYmRtOmTVOWLFnUvn17SVKHDh20fv16dejQQf7+/sqaNau2bNmib775Jsn3hbq4uKhp06aaPn26IiIiVLFiRZ08eVLBwcGqXLmyatasmeT6z58/r99++y3BdU5OTipSpIjlfZMmTTRx4kSlS5dODRo0sCzPmjWrOnfurGnTpun+/fuqXLmyrl69qmnTpslkMqlEiRKJrsfR0VGStHPnTjk5OalUqVJKnz69Bg0apF69eilHjhz6+eefdfLkScvjfwAAz0eoBQDAALJkyaJRo0bpo48+sloeEBCg6OhoSxjz9fXVgAEDLLP0vqxSpUqpfv36GjVqlO7du6eqVatq6NChluHHb775plasWKEpU6Zo1KhRioyMVOHChfXZZ5+pefPmST7fZ599pkKFCmnNmjWaN2+ecuXKpXbt2qlHjx6ysUn6ALNZs2Zp1qxZCa6rW7eu1ZDuhg0batKkSapTp44lfMbp27evcubMqa+++krz58+Xk5OTqlatqv79+8fb9nmKFSumhg0bavny5frxxx+1adMmLVy4UFOmTNFnn32m8PBwFS5cWGPGjFGzZs2SfL0A8F9kMj/9UDYAAAAAAAyEe2oBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBh/T+7miDKKKhvzQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_4868/712307362.py:26: FutureWarning: \n", "\n", "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", "\n", " ax_us = sns.barplot(x='count', y='Category', data=us_plot_data, palette='Blues_r')\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAAImCAYAAAC7EmJYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8XUlEQVR4nOzdd3iN9//H8dcJCULsVZsgVkKMEFsaRQSlrb2pWZuKolaJGSu22LVHzFZL+7WqdrU1qrX33jJEzu8PV87PaYI7lTgRz8d15ZJzz/d9PieJ1/l87s8xmc1mswAAAAAAwCvZ2boAAAAAAADeBQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AQCJjNpvfy3MnFonxOUzI1/Rfa0vI1wQg/hCgAQA25efnJxcXl1d+tWjRIl5r6Nu3b4zn/f7771+6z9SpU19bd1hYWLzWHZNDhw6pQ4cOhrZ98OCBAgMDVadOHbm7u8vT01OtWrXSTz/9FOvzhoeHa9SoUdq4cWOs941P+/btk4uLi/bt2xev51m7dq1cXFx06dKlNzrOv9vv0qVLcnFx0dq1a9+0xBh5eXnJz8/vpetdXFw0derUWB2zRYsWVj+zq1at0pgxY/5zjS/y8/OTl5fXa7f76aef1KpVK5UuXVqurq6qXr26Ro4cqdu3b1tt919rmz59uoKCgmK9H4B3X1JbFwAAeL916dJFjRs3tjyePn26jh8/rsDAQMuyVKlSxWsNJ0+elK+vb7SgnidPntfuu2LFipeuc3BweNPSYm3VqlU6ffr0a7c7ffq0Pv/8c0VGRqply5YqVKiQnjx5oo0bN6pz587q0aOHunTpYvi8N27c0MKFC+Xv7/8m5ce5okWLasWKFcqfP3+8nqdq1apasWKFMmfO/EbHMdp+CdmQIUOsHs+YMUMeHh5v7fzr1q3TgAED1LhxY7Vu3VopUqTQP//8o9mzZ+vnn3/WmjVrlCZNmjeqbfLkyfriiy/iunQA7wACNADApnLlyqVcuXJZHqdPn14ODg4qUaLEWzl/WFiYzp49q1atWv2nc76tOuPS06dP1bNnT9nb22vp0qXKkCGDZZ23t7cGDx6syZMny8vLS4UKFbJhpW8uVapUb6WN0qdPr/Tp08f7ed4F8f1mxetMmzZNtWvX1tChQy3LypUrp9KlS6tevXpatWqV2rdvb7sCAbzTGMINAHgn7NmzR02bNlWpUqVUtmxZ9enTR1evXrWsjxpCe/ToUdWvX19ubm6qU6fOK4dhS9KpU6cUERGhwoULx0vdGzdulIuLi06dOmW1fNu2bXJxcdHx48clSffu3dPXX3+t8uXLy9XVVQ0bNtTevXut9nFxcdG3336rgQMHysPDQ+7u7urRo4du3bol6fnw1nXr1uny5cuvHPa7Y8cOnTp1Sj169LAKz1G6d++u5s2bKyIiwqrepk2byt3dXcWKFVPNmjX17bffSno+zPjDDz+UJA0YMMBqiO3BgwfVvHlzFS9eXB4eHurfv7/u3Lljdb4jR46oWbNmKlGihKpWraqFCxeqdevWVkOLHz58KH9/f3l7e8vV1VW+vr5avXq11XG8vLw0atQotWrVSm5ubho4cGCMQ7hPnTqljh07qmTJkipZsqS6du2qixcvWh1r4cKFqlmzplxdXVWpUiUNHTpUjx49ivH5lKIP4fbz81Pr1q21Zs0a1ahRQ8WKFVO9evW0c+fOlx7jVe138+ZNde/eXe7u7vLw8NDgwYP1+PFjq/1XrVql2rVrq1ixYqpataqmTp2qZ8+evfR8/8XrXoOS9RBuLy8vXb58WevWrbN6fq5cuaLevXvLw8NDxYsXV6tWrSw/C1Hu37+vAQMGyMPDQ2XKlNG4ceMUGRn52hpv3boV4/3JhQoV0oABA1SsWLFX1nbgwAG1a9dOZcqUUbFixeTl5aWpU6dazu3i4iJJCgwMtHwvxc/rCkDCQ4AGACR4wcHBatu2rT744AMFBARowIABOnLkiBo1ahTtnsaOHTvqww8/VGBgoPLmzauePXtqx44dLz32yZMnJT0PHxUrVlSxYsXUtGlTHT161FBtERERMX5F/Wfb29tbjo6O2rx5s9V+mzZtUoECBVSkSBGFhYWpVatW2r59u3r16qXAwEBlzZpV7du3jxaiJ06cqMjISAUEBOjLL7/Uzz//rFGjRkl6Phy+SpUqypQpk1asWKGqVavGWPPOnTuVJEkSValSJcb1mTJl0uDBgy1B43//+5+6du2qokWLavr06Zo6dapy5syp4cOH6+jRo8qcObNlyH3nzp0t3x84cECtW7dW8uTJNWnSJH311Vfav3+/WrZsqdDQUEnPh5K3bt1akhQQEKBu3bpp9uzZOnTokKWe0NBQNW3aVBs3blT79u01ffp0lSpVSgMHDtTMmTOtav/222/l6uqq6dOn69NPP412bWfPnlXjxo11+/ZtjRkzRiNHjtTFixfVpEkTy2tp06ZNGjdunJo1a6agoCB17dpV69ev14gRI2J8vl7mzz//VFBQkLp3765p06YpSZIk6tatm+7fvx/j9q9qv8mTJ+uDDz7Q9OnT1apVK61cudLqNodZs2Zp8ODB8vT01MyZM9WsWTPNmTNHgwcPjlXNRrzqNfhvgYGBypQpk6pUqWIZ4n7nzh01btxYx44d0+DBgzVhwgRFRkaqWbNmluHrkZGRat++vXbs2KH+/ftr9OjROnz4sLZs2fLa+qpWrarNmzera9eu2rRpk65fv25Z17p1a5UrV+6ltZ08eVKtW7dW2rRpNXHiRM2YMUOlS5dWYGCgvvvuO0n/f9vGp59+avn+bb6uANgWQ7gBAAlaZGSkxo8fr4oVK2rChAmW5SVLlpSPj4+CgoL05ZdfWpa3aNFCXbt2lSRVqlRJ9evX17Rp014aFk+cOCFJCgkJ0YQJE3Tv3j3Nnj1bLVu21IoVK147hLlo0aIxLm/WrJm+/vprpUiRQjVq1NCWLVvUq1cvSdLjx4/1888/W+pcv369Tp48qZUrV6p48eKSpMqVK6tFixYaP3681qxZYzluwYIFre4z/v333y297Lly5TI0BP7atWtKly6dUqZM+cpri/LPP/+ofv36GjhwoGWZu7u7ypYtq3379ql48eKWHvxcuXKpSJEikqQJEyYob968mjVrlpIkSSJJKl68uGrXrq01a9aoWbNmmjVrlpycnDR37lylSJFCkpQvXz6r++LXrl2rU6dOafny5XJ3d5f0vG0jIiI0ffp0NW7cWGnTppUkZcuWTX379rXs++/JwwIDA5UiRQotWLDAcm+9p6envL29NXfuXPXv31/79+9Xjhw51KxZM9nZ2cnDw0OOjo4vDb4v8/DhQ61du9Zyi4Kjo6OaN2+uX3/9VTVq1Ii2fUzt9+TJE0lSjRo1NGDAAEu9e/bs0a+//mo5z/Tp09WoUSMNGjRIklSxYkWlTZtWgwYNUps2bVSgQIFY1f4qr3oN/luRIkXk4OCg9OnTW65p4cKFunfvnpYtW6bs2bNLev569/Hx0eTJkzVlyhTt3LlTv//+u+bMmaPKlStbrtvIBGIjRoxQZGSkfvjhB23btk3S8+f2ww8/VJs2bZQlS5aX1nby5EmVL19e48aNk53d836mChUq6KefftK+fftUu3Zty7ZZs2a1fP82X1cAbIsADQBI0M6ePaubN2+qT58+Vstz5cold3d37d+/32p5/fr1Ld+bTCZVr15dU6dOVWhoqJInTx7t+M2bN1e1atVUqVIlyzJPT0999NFHmjlzpiZNmvTK+v49jDjKi0Oj69Wrp3Xr1un333+Xm5ubtm/frvDwcNWtW1eStHfvXmXKlElFixa1GjZdrVo1jR07Vvfv37dMevTvYJw1a1aFhIS8ssZ/S5IkSayG9kbdL/r48WOdPXtWFy5c0B9//CHp+ezbMQkJCdHRo0fVrl07mc1my3XlzJlTzs7O2rNnj5o1a6Zff/1VlStXtoRn6Xk4jwpWkrR//35lz57dEp6j1K1bV6tXr9bRo0ctb5C8bij+r7/+Kg8PDyVPntxSU6pUqVS6dGn98ssvkp7fL7tixQo1aNBA3t7eqlKliurUqSOTyWT4OZOe3xf94v39WbNmtTw3sVW6dGmrxzly5LD00h85ckShoaHy8vKyev1Ehc09e/a8UYD+93W/6Wtw7969Kly4sLJkyWKp187OTpUrV9aGDRskPR/6b29vb/Vz6ejoqCpVqujAgQOvPL6Tk5OmTJmiS5cuaceOHdq3b5/27dun+fPna8WKFZo3b16011KUjz/+WB9//LFlboTz58/rxIkTevbsmZ4+ffrSc77N1xUA2yJAAwAStHv37kmSMmbMGG1dxowZo903+e9ZkDNkyCCz2awHDx7EGKDz5cunfPnyWS1LnTq1SpYsaRne/Squrq6v3aZs2bLKkiWLNm/eLDc3N23evFkeHh6WQHXv3j3dvHnzpb3ZN2/etAToF4Om9Dx4xPbzaLNnz67//e9/evz48Ut7oa9du2ap786dOxoyZIi2bdsmk8mk3LlzWwLdy8794MEDRUZGas6cOZozZ0609cmSJbMcO6b7sF9s7/v37ytTpkwv3ebBgweWZY6OjjHWE+XevXvasmVLjEOBoyYB8/HxUWRkpJYuXWoZsp49e3b17dtXPj4+rzz+i/7dVlFBych9vK871ovtHvUz8rKPL7tx48ZLj+vo6PjSN0Gilv/73G/6Grx3757Onz//0td7SEiI7t+/r7Rp00YLlzG9Dl4mqre3WbNmioyM1LZt2+Tn56cRI0a8dH6A0NBQjRgxQuvXr1dERIRy5Mghd3d3JU2a9JXX+DZfVwBsiwANAEjQoobmvjhJUZSbN28qXbp0Vsvu3btnFb5u3bqlJEmSWI7zb1u2bFHq1KlVsWJFq+VhYWFxNquynZ2d6tSpo02bNqlTp07as2ePhg8fblnv5OSkPHnyaPz48THunyNHjjipI0rFihW1ePFi7dq1SzVr1oy2/s6dO/rwww/VtGlTDRw4UH379tWZM2e0YMECubu7y8HBQSEhIVq5cuVLz5EyZUqZTCa1bt1atWvXjrY+KoRlzZo1xra9ffu25Y2NNGnS6Pz589G2uXnzpiRFew28ipOTk8qXL682bdpEW5c06f//t8jX11e+vr56+PChdu/erTlz5qhfv34qVaqUZQhwQpE6dWpJ0vjx42P86LWY3nx6cd3LAva1a9deu/9/4eTkJA8PD6tbL17k4OCgdOnS6e7du3r27Jll+L/0/28WvMzWrVs1ZMgQLVu2THnz5rUst7Oz00cffaQDBw688nU7cuRIbd26VZMmTVL58uUtb8h4enq+9poS2+sKQMyYRAwAkKDlzZtXmTJl0qZNm6yWX7x4Ub/99ptKlixptTzqnkfpee/oDz/8oFKlSr30M5mXL1+uIUOGWPXCXb9+XYcPH1bZsmXj7Drq1auna9euWSaT+uijjyzrPDw8dPXqVWXIkEGurq6Wrz179mju3LlWAeJ1ou7bfJWKFSuqYMGCmjhxou7evRtt/YQJExQREaE6depIkg4dOqSPPvpIZcuWtTyPUbNJR/Wm/rvGVKlSqUiRIjpz5ozVNRUoUEBTp0613JtcpkwZ7dq1S2FhYZZ9jx8/bpkROWqby5cv68iRI1bn2LBhg+zt7eXm5vbaa47i4eGhf/75R4ULF7bUVKxYMS1YsEA//vijJKlnz56W+9OdnJxUq1YtdenSRREREa/szY0LRtrv34oXLy57e3tdv37d6rlOmjSpAgICrJ7Lf/Pw8NDRo0dj3Ob7779XkiRJVKZMmVjX9KJ/X5OHh4fOnj2rvHnzWtW7fv16rV69WkmSJJGnp6ciIiKsfp7Dw8O1Z8+eV56rQIECunfvnhYuXBjj+nPnzqlgwYIvre3QoUMqW7asZfI/6flkcHfu3LEaORDTNSXk1xWAuEMPNAAgQbOzs1Pv3r01YMAA9enTR3Xr1tXdu3cVGBioNGnSROvxGTt2rMLCwpQ3b16tWrVKp0+fful/pqXnMx+3adNGXbp0UcuWLXX//n0FBgYqbdq0atu27Wvr++233166Lm/evJah1wULFlThwoW1dOlS1apVyzLRkCQ1aNBAS5YsUZs2bdSpUyd98MEH+uWXXzRnzhw1b95c9vb2r60jSurUqXXr1i3t2LFDhQsXjjakXXreIzZ27Fi1bdtWn3zyiVq2bKlChQrpzp07Wrt2rXbt2qU+ffpYgqmbm5s2btyookWLKmvWrDp8+LBmz54tk8lkuffVyclJ0vP7W52dnVW8eHH17t1bHTp0sLTbs2fPNG/ePB09elRdunSRJHXq1ElbtmxR+/bt1bZtWz148ECTJ0+WnZ2dZfhugwYNtHTpUnXt2lXdu3dXjhw59NNPP2nNmjX64osvLD2wRnTp0kWNGzdWx44d1aRJEyVLlkwrVqzQtm3bNGXKFEnP71UdMmSIxowZo8qVK+vBgwcKDAxUnjx54v1zsf/dfkakS5dO7du31+TJk/Xo0SOVLVtW169f1+TJk2UymV5Zc/PmzbVq1Sq1aNFCn3/+uQoUKKDQ0FD98ssvWrx4sdq3b69s2bK98TUdP35c+/fvl5ubm1q3bq3169erdevWatu2rdKlS6ctW7Zo5cqVVhOlVaxYUYMGDdLt27eVPXt2LVq06KVD/qPky5dPHTp00KxZs3TlyhXVrVtXWbNm1e3bt7V+/Xrt3btX8+fPf2ltbm5u+u6777Rs2TI5Ozvr5MmTmjFjhtVrPWq/w4cP68CBAypdunSCf10BiDsEaABAgtegQQOlTJlSs2bNUteuXZUqVSpVqlRJvXv3jnZP5NChQzVr1ixdvHhRRYoU0bx586JNwPSicuXKad68eZo6dap69eolOzs7VapUSX379rWEwldp1KjRS9dNmzZN3t7elsf16tXT6NGjLZOHRXF0dNS3336rCRMmaNy4cXr48KGyZ8+uPn36GArxL2rQoIF27NhhCZsvuy+2cOHCWr16tebPn69ly5bp+vXrcnR0lIuLi+bOnWs1edPo0aM1YsQIy8ft5MmTR8OGDdOGDRt08OBBSc97nNu0aaMVK1Zox44d2rNnjypWrKigoCAFBgaqe/fusre3V9GiRTV//nzLRFS5c+dWUFCQxo4dq+7duytDhgzq2LGjZsyYYbk/O0WKFFq8eLEmTJhgCYn58uXTyJEjY/yoqlcpVKiQvv32W02cOFFffvmlzGazChYsqGnTplk+y7px48Z6+vSpli9frqVLlyp58uTy9PRUv379YvVmxn/x7/Yzem9sz549lSlTJi1dulRz585VmjRp5Onpqd69e7/ydZw6dWqtXr1a06dP17x583Tjxg0lT55c+fLl0zfffKOPP/74ja+pbdu2GjVqlNq1a6f58+erdOnSWr58uSZMmKChQ4cqLCxMefLkidaegYGBGj9+vKZMmaKwsDD5+PioYcOG2r59+yvP17t3bxUuXFirVq3SN998o0ePHil16tQqXbq0Vq9ebRVW/12bn5+fnj59qkmTJik8PFw5cuRQ586d9c8//+inn36yDCnv1KmTpk+frs8//1xbtmxJ8K8rAHHHZI7tzCMAACRAa9eu1YABA7R9+/Y4v2cY8Wfv3r2yt7e3epPjwYMHKl++vL788ku1bNnShtUBAGCNHmgAAGAzx44d05QpU9S7d28VLVpU9+7d0/z58+Xk5CRfX19blwcAgBUCNAAAsJm2bdsqPDxcy5Yt09WrV+Xo6CgPDw/5+/vH2SzoAADEFYZwAwAAAABgAB9jBQAAAACAAQRoAAAAAAAMIEADAAAAAGAAk4jhvXXkyBGZzWY+exEAAAB4zz19+lQmk0nu7u6v3I4eaLy3zGaz5QuJi9lsVnh4OG2bCNG2iRdtm3jRtokXbZt4vY9tazQX0AON95a9vb3Cw8OVP39+OTo62rocxKEnT57oxIkTtG0iRNsmXrRt4kXbJl60beL1PrbtH3/8YWg7eqABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgMZ7z2Qy2boExDGTyaQUKVLQtokQbZt40baJF22beNG2iRdt+3Im8/v06djAC6I+683V1dXGlQAAAADvl2eRkUpil3D6c41mg6RvoxggIes1fatOX7lj6zIAAACA94JztvSa2KWGrcv4TwjQeO+dvnJHx87dtHUZAAAAABK4hNNnDgAAAABAAkaABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAAO+E3377TS1atFCJEiVUvnx59e/fX7dv37as37t3r5o3b64yZcqoQoUK6tatmy5cuBBn5ydAAwAAAAASvD///FMtW7ZUypQpFRgYqL59+2rPnj3q2rWrJOnQoUNq166d0qVLp/Hjx2vQoEE6d+6cmjRpojt37sRJDUnj5CiJkJeXly5fvmx5bDKZ5OjoqCJFiqhHjx4qU6bMGx3/0KFDMpvNKl269Cu3W7dunVatWqVTp05JkgoUKKDWrVurRo0ab3R+W/j77791+fJlVa1aVZLk4uIif39/NWjQwLaFAQAAAEjwxo0bpyJFimj69Omys3veF5wqVSqNHDlSFy9e1Jw5c+Ts7KzJkydb1pcsWVJVq1bVunXr1K5duzeugR7oV2jbtq12796t3bt3a+fOnVq+fLlSpUql9u3b68qVK2907KZNm75yKIHZbFaPHj00evRo+fj4aPny5VqxYoUqV66sXr16afbs2W90flvo2LGj/vjjD8vj3bt3y8fHx4YVAQAAAHgX3L17V/v371eTJk0s4ViSPvroI+3YsUM5c+ZU8eLF1apVK6v1WbJkkZOTU5wN46YH+hUcHR2VKVMmy+PMmTNr2LBhqly5sn788Ue1atUq3s69dOlS/fjjj1q1apWKFi1qWd65c2c9e/ZMU6ZMka+vr7JlyxZvNcS3F59bAAAAAHiZv/76S5GRkUqfPr369Omjn376SZJUvXp1DRo0SKlTp1bnzp2j7bd//37dv39fBQoUiJM66IGOpaRJn7/n4ODgIEkKDQ3VpEmT9OGHH8rV1VX16tXT1q1bLduvXbtW1atX1zfffKNSpUqpS5cucnFxkSQNGDBAfn5+MZ5n+fLlqlq1qlV4jtKqVSstWLBAGTNmjFUNUf8WK1ZMDRo00KFDhyzbhISEaMiQISpbtqxKliypgQMHqk+fPlb1HT58WM2aNZObm5uqVq2qYcOG6dGjR5b1v//+u5o2bSp3d3eVKVNG3bp1s/TURw2JDwwMVIsWLSQ9H8K9du1ay/7BwcGqW7eu3Nzc5OXlpenTp+vZs2eSpEuXLsnFxUVbt27VZ599pmLFisnLy0srVqx4bZsBAAAAeLdF3cP81VdfKXny5Jo+fbq+/PJL/fzzz+rYsaPMZnOM+wwePFiZM2fWxx9/HCd1EKBj4fr16xo+fLgcHR1VpUoVSVLv3r0VHByswYMHa8OGDfL29laPHj20bds2y34XLlzQjRs3FBwcrF69emn37t2Snjf+wIEDo50nLCxMp06dUsmSJWOsw8nJSaVLl7aEeCM1XL16VcuXL9e4ceO0bt06pUiRQn5+fpYXWv/+/bVnzx5NnDhRy5cv18OHD7V582bL/idPnlSbNm1UqVIlbdiwQePHj9exY8fUtm1bmc1mPXv2TB07dlSZMmW0YcMGLViwQFeuXNFXX30lSVq9erWyZs2qtm3baurUqdGuacGCBRo8eLAaNWqkDRs2qEePHgoKCtLo0aOttvP391enTp303XffqWrVqho6dKguXrz4+sYDAAAA8M56+vSpJKlo0aIaOXKkPD091aRJEw0dOlSHDx/Wnj17rLa/ceOGWrVqpRs3bigwMFCpUqWKkzoYwv0Ks2bN0rx58yRJERERCg8Pl7OzsyZNmqRs2bLp9OnT2r59u2bOnGmZGKtbt246efKkZs6cKW9vb8uxunTpopw5c1od38nJSU5OTtHOe//+fUlSmjRpXluj0RqePn2qYcOGqXDhwpKkNm3aqGvXrrp586bCwsK0detWzZ07V+XLl5f0/Ab9w4cPW84TFBSkChUqqFOnTpKkPHnyaMKECfL29tb+/ftVqFAh3b17V5kzZ1b27NmVM2dOTZo0yTKlfPr06ZUkSRI5Ojoqbdq0VtdgNps1Z84cNW/eXM2aNbMc/969exo3bpy6d+9u2bZ169b68MMPJUm9evXSt99+q6NHj0Z7bgEAAAAkHilTppQkVatWzWp5pUqVJEnHjx9XxYoVJT0f7t2pUyc9fvxYc+fOVfHixeOsDgL0KzRu3Ngy3NjOzk5p06a1Crx//fWXJKlUqVJW+5UpU0YBAQFWy/LkyWP4vGnTppXJZNLdu3dfu21sanB2drZ8H3UdT58+1fHjxyVJ7u7ulvXJkiWTm5ub5fHx48d1/vx5q22inD59WmXLllX79u01YsQITZkyReXKlVOVKlVUq1at117DnTt3dOvWrWjX4OHhoadPn+rMmTPKkCHDK68BAAAAQOIVlafCw8OtlkdEREiSkidPLkn69ddf1bVrVzk5Oenbb7+Ns3ufoxCgXyFNmjTKnTt3rPczm82We6WjRDWoEQ4ODipWrJhVD/CLHjx4oC+++EJffPFFrGqIGvL97+2SJEkiSYqMjHzp8SIjI1WnTh1LD/SL0qdPL0nq27evmjZtqh07dmjv3r0aMWKE5s6dq+Dg4BjP/WINLzunJKvreNk1AAAAAEi8nJ2dlT17dm3evFnNmzeXyWSSJG3fvl2SVLp0aR0/flydOnVSjhw5FBQUpCxZssR5HdwD/QaiJgN7cTIuSTp48KDy58//Rsdu2LChdu7cqWPHjkVbt2jRIh08eFA5cuSIkxpcXFxkMpn022+/WZaFh4dbnbtAgQL6559/lDt3bstXRESE/P39dfXqVZ05c0ZDhgxRhgwZ1KRJE02ZMkVz587V6dOndfLkyVeeP2PGjMqYMWOM12Bvb69cuXIZug4AAAAAiZPJZNKXX36p3377Tb169dIvv/yiRYsWadSoUapRo4aKFCmigQMHKiIiQt26ddPVq1f122+/Wb74GKsEwNnZWdWqVdOwYcNkMpmUO3dubd68Wdu3b9ekSZNeua+jo6NOnz6tu3fvKl26dNHWf/rpp9q+fbvatGmjHj16qEKFCgoNDdWGDRs0f/589e/f3/IRVv+1hig5c+ZUrVq1NGLECA0fPlyZMmXSrFmzdO3aNcs7O23btlWzZs00bNgwNW/eXA8ePNCwYcMUGhqqPHny6PHjx9q8ebNCQ0PVoUMH2dnZad26dUqTJo3y5csn6fl9C+fOndOtW7csM4hHadeunSZOnKicOXOqQoUK+v333xUYGKhGjRrJycnJcl84AAAAgPdTzZo1NWPGDE2bNk0dO3ZUmjRp1LhxY/Xq1UsXL1603Jr64hxKUerXrx9tguL/ggD9hgICAhQQEKCBAwfqwYMHKliwoKZOnarq1au/cr+2bdtaemhnzpwZbb2dnZ2mTZumJUuWaNWqVZowYYKSJk2qAgUKKDAw0DKR1pvU8KIRI0bom2++Ubdu3WQ2m1WnTh25u7vL3t5eklSiRAnNnTtXkydPVv369eXo6ChPT0/1799fDg4OcnBw0Jw5czRhwgQ1bNhQz549U4kSJTR//nzLjHctWrTQmDFj9Pfff2vDhg3Rng8HBwctXLhQo0aNUtasWfX555+rXbt2hq8BAAAAQOJWrVq1aBOJSc87BaPmh4pPJjM3kL73wsLCtGvXLpUrV85qevcaNWqobt266tq1qw2riz9//PGHJGngij917NxNG1cDAAAAvB+K5smkDd80sXUZVqKygaur6yu3owcacnBw0LBhw+Th4aEuXbooSZIkWr16ta5cuaKaNWvaujwAAAAASBCYRAwymUyaPXu27t69q0aNGql+/fo6cuSI5s2bZ/WxUQAAAADwPqMHGpKkwoULa968ebYuAwAAAAASLHqgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABSW1dAGBrztnS27oEAAAA4L3xLv//mwCN997ELjVsXQIAAADwXnkWGakkdu/egOh3r2IgDoWHhyskJMTWZSCOhYSE6Pjx47RtIkTbJl60beJF2yZetG3i9Tba9l0MzxIBGpDZbLZ1CYhjZrNZISEhtG0iRNsmXrRt4kXbJl60beJF274cARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQOO9ZzKZbF0C4pjJZFKKFClo20SItk28aFsAwLsgqa0LAGzJwcFBKVKksHUZiGMpUqRQkSJFbF0G4gFtm3glhraNjDTLzo43AAAgMSNA4703NvigLtx+aOsyAADvsFwZnPTlx6VtXQYAIJ4RoPHeu3D7oU5fu2/rMgAAAAAkcNwDDQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAMBGIiMjFRQUpI8++khubm6qW7euNmzY8NLtR40aJRcXl7dYIQDgRUltXQAAAMD7avLkyQoKClL37t3l6uqqHTt2qF+/frKzs5Ovr6/VtgcOHNCiRYtsVCkAQKIH+o14eXnJxcXF8lWoUCGVLFlSzZs314EDB974+IcOHdLBgwdfur5FixZW5y9atKgqVqyovn376tKlS9FqnTp16hvX9CaePn2qBQsWWB5PnTpVXl5etisIAAAbCgkJ0aJFi9SiRQt16NBBnp6e8vPzk4eHhxYvXmy17ePHjzVgwABlyZLFRtUCACQC9Btr27atdu/erd27d2vnzp1avny5UqVKpfbt2+vKlStvdOymTZvqwoULr9ymVq1alvNv3bpV48aN04ULF9S4cWOr869evVpt27Z9o3re1KZNm+Tv72953LZtW61evdqGFQEAYDsODg5atmxZtL/P9vb2CgsLs1o2duxYZcyYUQ0aNHibJQIA/oUA/YYcHR2VKVMmZcqUSZkzZ1bBggU1bNgwhYaG6scff4z38ydPntxy/hw5csjT01NBQUFKkiSJAgICLNulT59eKVOmjPd6XsVsNls9TpkypdKnT2+jagAAsK0kSZKoUKFCypQpk8xms27duqXZs2frl19+UdOmTS3b7dmzR+vXr5e/v7/s7PivGwDYEr+F40HSpM9vLXdwcJAkhYaGatKkSfrwww/l6uqqevXqaevWrZbt165dq+rVq+ubb75RqVKl1KVLF8sEIQMGDJCfn1+szu/k5KQGDRroxx9/VHh4uCTrIdwhISEaOHCgKlSoIFdXV3388cf64YcfLPu3aNFCgwcP1meffabSpUtrw4YN8vPzU4sWLazO8+KyS5cuycXFRcHBwfL19ZWbm5saNmyoQ4cOWa5xwIABkiQXFxft27cv2hDuq1evqm/fvqpQoYJKlCihdu3a6eTJk1bn8/Pz05gxY+Tp6anixYurY8eOun79eqyeHwAAEprNmzerQoUKmjBhgqpUqaK6detKkh4+fKiBAweqe/fuyps3r42rBAAQoOPY9evXNXz4cDk6OqpKlSqSpN69eys4OFiDBw/Whg0b5O3trR49emjbtm2W/S5cuKAbN24oODhYvXr10u7duyVJX331lQYOHBjrOgoWLKjQ0FCdO3cu2rrJkyfrr7/+0uzZs7VlyxZVrlxZvXr1srpvetWqVWrZsqWWLl2qSpUqGT7v6NGj1alTJ61bt0758uVT27ZtdfHiRfn4+Oirr76SJO3evVvu7u5W+z169EhNmjTR9evXNWPGDC1fvlzJkydX8+bNdfnyZct2mzZt0r1797RkyRLNmTNHx44d06RJk2L35AAAkMC4ublpyZIlGjx4sA4fPqz27dvLbDZr1KhRypo1q1q3bm3rEgEAYhbuNzZr1izNmzdPkhQREaHw8HA5Oztr0qRJypYtm06fPq3t27dr5syZqlq1qiSpW7duOnnypGbOnClvb2/Lsbp06aKcOXNaHd/JyUlOTk6xrit16tSSnr9z/W8XLlxQypQplTNnTqVOnVo9evRQmTJllCZNGss2hQsXVp06dWJ93g4dOlhmDR0xYoR+/fVXrVy5Un369LFcR6ZMmaLtt2HDBt29e1dr1661DOueMGGCvL299e233+rLL7+U9Pz5GD58uOzt7eXs7CwfHx/t2LEj1nUCAJCQ5MqVS7ly5VKZMmWUKlUq9e/fX9OmTdPmzZu1Zs0aRUZGWr6k5//nsLOzY0g3ALxlBOg31LhxY8swZjs7O6VNm9Yq8P7111+SpFKlSlntV6ZMGat7lCUpT548cVZXVHCOCtIv+vzzz9WpUyd5enrKzc1NFSpUUJ06dazqzp079386b9myZS3f29vbq1ixYjp16tRr9zt16pTy5MljdU908uTJ5ebmZrV/rly5ZG9vb3ns5OSkp0+f/qdaAQCwpTt37mjnzp2qVKmSMmTIYFlepEgRSc/fpA8PD4/2cVaSVLRoUdWvX1+jR49+a/UCAAjQbyxNmjT/KWyazWbLvdJRkidPHldl6dixY3J0dIwxlLu7u2vHjh3as2eP9u7dq+DgYM2YMUNz586Vp6en4VoiIiKiLfv3NT179szQu+P/nmAsSmRkpNUxo+4rBwDgXRcaGqr+/furd+/e6tixo2X5nj17JEnr1q1TSEiI1T4rV67UypUrtXr1aqVLl+6t1gsA4B7oeBc1GVjUZFpRDh48qPz588fLOR89eqTg4GDVrFnTqrc2ypQpU3To0CF9+OGHGjRokLZu3aqcOXNaTWz2b/b29nr06JHVsvPnz0fb7o8//rB8Hx4ermPHjqlo0aKSJJPJ9NLju7i46Ny5c7p9+7ZlWVhYmP788894e54AALClbNmy6ZNPPtG0adMUFBSkvXv3aurUqQoICNCnn36q/Pnzy9XV1eorc+bMkiRXV1flyJHDxlcAAO8feqDjmbOzs6pVq6Zhw4bJZDIpd+7c2rx5s7Zv3/7aya8cHR11+vRp3b1796XvMoeGhurmzZuSpKdPn+rMmTOaPn26zGazevbsGeM+Fy9e1IYNGzRixAjlypVLR48e1ZUrV6JN7PWiEiVKaPXq1dqwYYPc3d21YcMGnTp1Sm5ublbbTZo0SRkzZlSOHDk0c+ZMhYSEqGHDhpbrkRRjKK5Tp45mzZqlnj17ql+/fnJwcNC0adP05MkTNWrU6JXPEwAA76qhQ4cqZ86cWrlypS5fvqwPPvhA3bt3V7t27WxdGgAgBgTotyAgIEABAQEaOHCgHjx4oIIFC2rq1KmqXr36K/dr27at5s6dq9OnT2vmzJkxbvPdd9/pu+++k/R8+HSmTJnk7e2tgIAAZcmSJcZ9hgwZojFjxqhfv366d++esmfPrr59+6pevXovraVu3bo6ceKEvvnmG0VERKhWrVpq1aqVjhw5YrVdkyZNNGbMGF25ckXFixfX4sWLLe+WlytXTsWLF1fjxo01btw4q/2cnJy0ZMkSjR492jLTaKlSpbRs2bJoE6sBAJBYODg4qHPnzurcubOh7bt166Zu3brFc1UAgJcxmV928ykQC5cuXdKHH36oRYsWWU0klpBFDTeftf+WTl+7b+NqAADvMuesaRTYrpqty0iQnjx5ohMnTqhw4cKW0WhIHGjbxOt9bNuobODq6vrK7bgHGgAAAAAAAwjQAAAAAAAYwD3QiBM5cuSwfOY1AAAAACRG9EADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAOSxnaHWbNm6eOPP1aWLFniox7grcuVwcnWJQAA3nH8LQGA90OsA/ScOXM0ZcoUeXp6qkGDBvL29paDg0N81Aa8FV9+XNrWJQAAEoHISLPs7Ey2LgMAEI9iPYR79+7d8vf3l9lsVt++fVWpUiUNGzZMv//+e3zUB8Sr8PBwhYSE2LoMxLGQkBAdP36ctk2EaNvEKzG0LeEZABK/WPdAJ0+eXHXr1lXdunV17do1rV+/Xt9//72WL1+u/Pnzq0GDBqpXr57Sp08fH/UCcc5sNtu6BMQxs9mskJAQ2jYRom0TL9oWAPAueKNJxLJmzao2bdqoS5cuKl26tP7++2+NHTtWVatW1dChQ/Xo0aO4qhMAAAAAAJuKdQ90lP3792v9+vXaunWrnjx5onLlyikgIECVK1fWzp07NXz4cF25ckWzZ8+Oy3oBAAAAALCJWAfoiRMnauPGjbp69ao++OADtW7dWg0aNFC2bNks2/j4+Oivv/7SokWL4rRYAAAAAABsJdYBev78+fL29taIESNUvnx5mUwxT5jh6uqqnj17vml9AAAAAAAkCLEO0B07dlTNmjXl7Oz8yu28vb3/c1EAAAAAACQ0sZ5EbM6cObp06VJ81AIAAAAAQIIV6wDt7Oyss2fPxkctAAAAAAAkWLEewl2tWjUFBARo165dcnFxkaOjo9V6k8mkrl27xlmBAAAAAAAkBLEO0IGBgZKkPXv2aM+ePdHWE6ABAAAAAIlRrAP0yZMn46MOAAAAAAAStFgH6BedPn1aDx8+VPr06ZUrV664qgkAAAAAgATnPwXoTZs2acyYMbp165ZlWcaMGdWnTx99/PHHcVUbAAAAAAAJRqwD9E8//aR+/fqpXLly6t27tzJmzKgbN25ow4YNGjBggNKmTauqVavGQ6kAAAAAANhOrAP0jBkzVLNmTU2cONFq+SeffKJevXpp1qxZBGgAAAAAQKIT68+BPnXqlOrXrx/juvr16zPJGN45JpPJ1iUgjplMJqVIkYK2TYRo28SLtgUAvAti3QOdLl063b9/P8Z19+7dk4ODwxsXBbwtDg4OSpEiha3LQBxLkSKFihQpYusyEA9o28QrIbZtpNksOwI9AOAFsQ7Qnp6eCgwMVJkyZZQ1a1bL8qtXr2ratGmqUKFCnBYIxLcV+07r5sMQW5cBAEhAMjmlUKOyzrYuAwCQwMQ6QPfu3VuffPKJPvroI7m7uytjxoy6deuWjhw5ojRp0qhPnz7xUScQb24+DNGVe09sXQYAAACABC7W90BnypRJ69atU4sWLRQSEqI///xTISEhatGihdatW6fs2bPHR50AAAAAANjUf/oc6AwZMqhfv35xXQsAAAAAAAlWrAN0YGDgS9fZ2dnJ0dFRuXPnVoUKFZhQDAAAAACQaMQ6QG/YsEHXrl1TeHi4kiZNqrRp0+revXuKiIiQyWSS2WyWJOXPn1+LFi1S+vTp47xoAAAAAADetljfA92jRw85ODgoICBAv//+u3bv3q0//vhDgYGBSpcunSZNmqSNGzfKZDIpICAgPmoGAAAAAOCti3WAnjp1qnr27CkfHx/Z2T3f3WQyydvbW927d9fkyZNVoEABderUSTt27IjzggEAAAAAsIVYB+irV68qd+7cMa7Lnj27Ll++LEnKkiWL7t+//2bVAQAAAACQQMQ6QOfPn1+rVq2Kcd3q1auVN29eSdK5c+eUOXPmN6sOAAAAAIAEItaTiHXr1k1du3ZV/fr19dFHHylDhgy6deuWtm3bpr/++ktTpkzR8ePHNW7cOH3yySfxUTMAAAAAAG9drAN01apVFRQUpKlTpyowMFDPnj1T0qRJVapUKS1cuFClS5fWTz/9pNq1a6tnz57xUDIAAAAAAG9frAO0JJUrV07lypVTeHi47t+/rwwZMlgmFJMkLy8veXl5xVmRAAAAAADY2n8K0JK0Y8cO/fLLL7p586Z69eqlEydOqGjRosqePXtc1gcAAAAAQIIQ6wAdEhKirl276pdfflGqVKn0+PFjtWvXTsuWLdPx48e1ZMkSFShQID5qBQAAAADAZmI9C3dAQICOHTumBQsW6Ndff5XZbJYkjRkzRlmyZNHkyZPjvEgAAAAAAGwt1gH6u+++U+/evVWuXDmZTCbL8syZM6tz5846dOhQnBYIAAAAAEBCEOsA/eDBg5fe55wmTRo9efLkjYsCAAAAACChiXWALlCggDZu3Bjjup9++on7nwEAAAAAiVKsJxHr3LmzvvjiC927d0/VqlWTyWTSgQMHtHbtWi1fvlwTJkyIjzoBAAAAALCpWAdob29vjRs3ThMmTNCOHTskSaNHj1aGDBk0dOhQ1axZM86LBAAAAADA1v7T50DXqVNHderU0ZkzZ3Tv3j2lTp1a+fLlk51drEeEAwAAAADwToh14m3ZsqVOnz4tScqXL59Kliyp/Pnzy87OTidPnlSdOnXivEgAAAAAAGzNUA/0wYMHLZ/3vH//fh04cEB37tyJtt3PP/+sixcvxm2FAAAAAAAkAIYC9KpVq7R+/XqZTCaZTCYNGzYs2jZRAdvX1zduKwQAAAAAIAEwFKAHDRqkTz75RGazWa1atdLXX3+t/PnzW21jZ2en1KlT8zFWAAAAAIBEyVCAdnJykoeHhyRp0aJFKlKkiFKlShWvhQEAAAAAkJDEehZuDw8PXb9+XTt37lR4eLhleWRkpEJCQnTw4EFNnDgxTosEAAAAAMDWYh2gv//+e/Xt21cREREymUySnt//HPV9vnz54rZCAAAAAAASgFh/jNXMmTNVtGhRrV27Vg0aNFC9evW0efNm9evXT0mSJNFXX30VH3UCAAAkeJGRkQoKCtJHH30kNzc31a1bVxs2bLDaZu3atfL19ZWbm5tq1KihRYsWWSZjBQAkbLHugT579qwmTJigIkWKqGzZspo3b56cnZ3l7OysW7duaebMmapQoUJ81AoAAJCgTZ48WUFBQerevbtcXV21Y8cO9evXT3Z2dvL19dWqVas0aNAgtW/fXhUrVtTRo0c1evRoPXnyRJ06dbJ1+QCA14h1gLazs1OaNGkkSblz59aZM2cUGRkpOzs7Va5cWevWrYvzIhMTLy8vXb582fLYZDLJ0dFRRYoUUY8ePVSmTJk3Ov6hQ4dkNptVunTpNy1VknT37l1t27ZNn3322Su3mzVrlq5cuRLjR5y1aNFC+/fvt1pmb2+vjBkzysvLS/369VOKFCkkPX9+6tevr27duhmq78qVKzpy5Ihq165t8IoAAIgfISEhWrRokVq0aKEOHTpIkjw9PXXs2DEtXrxYvr6+mjlzpmrUqKF+/fpZ1p87d05LliwhQAPAOyDWATpfvnw6fPiwypQpo3z58ik8PFwnT55UkSJF9ODBA6uJxRCztm3bqm3btpKe3z9+7949BQQEqH379vruu++ULVu2/3zspk2byt/fP84C9NixY3Xp0qXXBugdO3aoffv2L11fq1YtDRw40PL4yZMn2r17t/z9/RUZGamhQ4dKklavXq1kyZIZrq9///7Knj07ARoAYHMODg5atmyZMmTIYLXc3t5eDx8+lCTNnj072t85e3t7hYWFvbU6AQD/XawDdOPGjTVkyBA9efJEvXr1Urly5TRgwAB9+umnWrJkiYoWLRofdSYqjo6OypQpk+Vx5syZNWzYMFWuXFk//vijWrVqZcPqrBm5J+vBgwc6ceKEypUr99JtkidPbnXN0vMRDH/++ae2bNliCdDp06d/o3oBALCVJEmSqFChQpKe//28ffu21q5dq19++UXDhw+XJDk7O1vW379/Xz/++KOCg4Mtb6wDABK2WE8i9tlnn2ngwIGWnuYRI0YoLCxMI0eOVEREhFUvI4xLmvT5exkODg6Sng9lHjNmjHx8fFS2bFnt379fz54904IFC1SjRg25urqqRo0aWrZsmeUYLi4ukqQBAwbIz89PknT9+nX16tVLpUuXVtmyZdWpUyedO3fOss/t27fVvXt3lS1bVm5ubmrcuLFluLWfn5/WrVun/fv3W44dk927d8vd3V2Ojo6xvu5kyZJZrj3quqdOnWp5/L///U8NGzaUu7u7KlasKH9/f4WGhkr6/6Hh69atk5eXV6zPDQBAfNm8ebMqVKigCRMmqEqVKqpbt67V+t9++01ly5bVoEGDVLBgQbVp08ZGlQIAYiPWPdCS1KxZM8v3OXPm1Hfffae7d+/Se/gfXb9+XaNGjZKjo6OqVKliWb5kyRLNmjVLTk5OcnFx0ejRo7V+/XoNHjxYrq6u2rlzp0aOHKmwsDC1bt1au3fvVsWKFfXVV1+pQYMGevLkiVq0aKGiRYtqyZIlsrOz0/z589WwYUNt3LhRWbJk0dChQxUeHq4lS5bIwcFBM2fOVJcuXbRz504NHDhQoaGhunbtmlWo/bcdO3aocuXKsbrmiIgI7d69W+vXr1fjxo1j3ObHH39U9+7d1a1bN40ZM0ZnzpzR0KFDdfHiRU2fPl1Tp05Vp06dlDVrVn399dexOj8AAPHJzc1NS5Ys0V9//aXJkyerffv2Wrx4seVjP7Nly6bFixfr0qVLmjRpkho3bqx169ZZ5gQBACRMsQrQd+7c0aNHj5QrVy6r5YsXL5aPj0+cFpaYzZo1S/PmzZP0PEiGh4fL2dlZkyZNsrr/uUqVKipfvrwk6dGjR1q2bJn8/PxUp04dSVKePHl06dIlzZ49W61atbIMkXZycpKTk5NWrVqlBw8eaNy4cZZe3pEjR2rfvn1auXKlunXrpgsXLqhgwYLKmTOnkidProEDB6pOnTpKkiSJHB0dlTx5ctnb20cbfh3FbDZr9+7d6tix4yuveePGjdq6davlcWhoqLJly6Z27dq9dNKU2bNnq3r16urSpYskKW/evDKbzeratav++ecf5c+fX/b29kqePDlv3gAAEpRcuXIpV65cKlOmjFKlSqX+/fvr4MGDlslCs2TJoixZssjDw0M5c+ZU8+bNtXXrVn388ce2LRwA8EqGh3AHBwfLy8tLy5cvt1p+7do1jRo1Sl5eXvruu+/ivMDEqHHjxgoODlZwcLC2bNmigwcPasuWLVa9z9Lze4SjnDlzRk+fPlWpUqWstvHw8NDt27d1+/btaOc5fvy47t+/rzJlysjd3V3u7u4qVaqUrl27ptOnT0uSvvjiC/3444/y8PBQmzZttGLFCjk7OxueyOvPP/9U8uTJlS9fvldu5+XlpeDgYK1bt07Dhg1T6tSpVb58eXXq1MlqCPeLTp06pZIlS0a73qh1AAAkJHfu3FFwcHC0v8lFihSR9PyTIzZu3Kjz58/HuP7GjRtvp1AAwH9mqAf60KFD+uqrr1ShQgXVq1fPal3WrFm1bt06jR8/Xn369FGOHDnk6uoaL8UmFmnSpLEKxy+TPHlyy/cvm8wrMjJSkmIMoZGRkcqbN69mzJgRbV3U/crVq1fXrl27tGvXLv3yyy+aP3++AgMDtXLlShUoUOC1Ne7YsSNa8I9JypQpLdecJ08eZc6cWW3atFGSJEksE4j9W0zX/KrrBQDAlkJDQ9W/f3/17t3bamTWnj17JElFixbVJ598onr16lkmFXtx/avmGwEAJAyGeqDnzJmjcuXKac6cOTH+ci9cuLDmzJmjYsWKadasWXFeJJ7P2mlvb69Dhw5ZLT948KAyZcpk+WzuFxUsWFBXrlyRk5OTcufOrdy5cytbtmyaMGGCDhw4oPDwcPn7++vixYvy8fHRN998o23btsnOzk7/+9//JMlyr9bL7Ny5M9b3P0tSuXLl1KZNGy1btkw7d+6McRsXFxcdPnw42vVK/z+LKQAACUW2bNn0ySefaNq0aQoKCtLevXs1depUBQQE6NNPP1X+/PnVoUMHrVy5UpMmTdLevXu1YMECffXVVypfvvx/+nsKAHi7DAXoY8eOqVGjRq8+kJ2dmjVrpj///DNOCoO1VKlSqVGjRpoyZYo2bdqk8+fP69tvv9XSpUvVtm1bS9B1dHTU6dOndffuXdWtW1dp0qRR9+7ddfToUZ0+fVp+fn7auXOnXFxc5ODgoD/++EODBw/Wb7/9pkuXLmnt2rV68uSJ3N3dLce7ceOGLl68GK2mO3fu6NSpU6/8+KpX6dGjh/LkyaOhQ4fq8ePH0da3b99eP/zwg6ZPn66zZ8/q559/1ogRI1StWjVLgE6ZMqUuX76sa9eu/acaAACIS0OHDlXnzp21cuVKff7559qwYYO6d++uESNGSJK6dOmiIUOGaNu2berYsaMWLFigxo0ba+bMma990xoAYHuGxsE+fPhQadOmfe12H3zwge7du/eGJeFlBgwYoHTp0mn8+PG6deuW8uTJo6+//loNGza0bNO2bVvNnTtXp0+f1syZM7VkyRKNHTtW7dq107Nnz1S0aFHNmzfPEkAnTpwof39/de7cWQ8fPlS+fPk0fvx4lS5dWpL08ccf68cff5Svr69++OEHZcmSxXKu3bt3q1SpUlZDzWMjWbJkGjFihFq2bKmJEydq0KBBVutr1KihgIAAzZgxQ9OnT1f69Onl6+ur7t27W7Zp3Lix+vfvr7p162rv3r1KkiTJf6oFAIC44ODgoM6dO6tz584xrjeZTGrSpImaNGnylisDAMQFk/llN9e+oFatWmrVqtVLP24oysqVKzV79mxt27YtzgoE4ssff/whSdpx3aQr957YuBoAQEKSLa2jvvAuZusyEoUnT57oxIkTKly4sGUOFiQOtG3i9T62bVQ2eN18XoaGcFerVk2LFy9WeHj4S7cJCwvT4sWLVbZs2ViUCQAAAADAu8FQgG7durXu3Lmj1q1bx3iP87Fjx9SuXTtdunRJbdu2jfMiAQAAAACwNUP3QGfOnFmBgYHq1auXPvvsM2XIkEE5cuTQs2fPdPXqVd2+fVsZMmRQYGAgsyMDAAAAABIlwx+mW6pUKW3cuFHr1q3T7t27de3aNSVJkkSurq6qWLGi6tWrp1SpUsVnrQAAAAAA2IzhAC1JadKkUevWrdW6det4KgcAAAAAgITJ0D3QAAAAAAC87wjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAbEOkAfOHBAjx8/jnHdgwcPtHnz5jcuCgAAAACAhCbWAbply5Y6ffp0jOuOHz+uAQMGvHFRAAAAAAAkNIY+xqp///66evWqJMlsNmvo0KExfubzuXPnlDFjxritEAAAAACABMBQD3SNGjVkNptlNpsty6IeR33Z2dmpRIkS8vf3j7diAQAAAACwFUM90F5eXvLy8pIktWjRQkOHDpWzs3O8FgYAAAAAQEJiKEC/aPHixfFRBwAAAAAACVqsA3RoaKhmzJihn3/+WSEhIYqMjLRabzKZtG3btjgrEAAAAACAhCDWAXrkyJFavXq1PDw8VLhwYdnZ8VHSAAAAAIDEL9YB+ocfflCvXr3UoUOH+KgHAAAAAIAEKdbdx0+fPpWbm1t81AIAAAAAQIIV6wBdsWJF7dy5Mz5qAQAAAAAgwYr1EG4fHx8NGTJEd+7cUfHixZUiRYpo23z88cdxURsAAAAAAAlGrAN0z549JUnBwcEKDg6Ott5kMhGgAQAAAACJTqwD9Pbt2+OjDgAAAAAAErRYB+js2bNbPQ4LC5ODg4NMJlOcFQUAAAAAQEIT6wAtSWfOnNGUKVP0yy+/6NGjR1q1apVWr16tfPnyqUWLFnFdIwAAAAAANhfrWbhPnDihTz/9VMeOHVOdOnVkNpslSUmSJNGoUaO0bt26OC8SAAAAAABbi3UP9JgxY1SsWDHNmzdPkvTtt99KkgYNGqSwsDAtWrRI9evXj9sqAQAAAACwsVj3QP/2229q3bq1kiZNGu2+Zx8fH507dy6uagMAAAAAIMGIdYBOliyZQkNDY1x37949OTg4vHFRAAAAAAAkNLEewl2hQgVNmTJFJUuWVKZMmSQ9/+znx48fa968eSpfvnycFwnEp0xOKWxdAgAggeFvAwAgJrEO0P369VOjRo1Us2ZNFSpUSCaTSaNHj9bZs2dlNpsVEBAQH3UC8aZRWWdblwAASIAizWbZ8TGdAIAXxHoI9wcffKD169erVatWMpvNypUrl548eSJfX1+tXbtWOXPmjI86gXgRHh6ukJAQW5eBOBYSEqLjx4/TtokQbZt4JcS2JTwDAP4t1j3Qd+7cUfr06dWrV6/4qAd466I+ig2Jh9lsVkhICG2bCNG2iRdtCwB4F8S6B7py5crq3Lmzvv/+e4WHh8dHTQAAAAAAJDixDtB9+/bV7du31bNnT1WoUEGDBg3SwYMH46M2AAAAAAASjFgP4W7durVat26tixcvatOmTdqyZYtWr16tbNmyqW7duqpTp46cnZmUCQAAAACQuMS6BzpKzpw51blzZ23cuFEbN25U1apVNWfOHPn6+sZlfQAAAAAAJAix7oF+0e3bt/Xdd9/pu+++05EjR5Q2bVr5+PjEVW0AAAAAACQYsQ7QDx8+1NatW7V582YdOHBASZIkkZeXl6ZPn65KlSopSZIk8VEnAAAAAAA2FesA7enpqcjISJUqVUpDhw5VzZo1lSpVqvioDQAAAACABCPWAbpbt26qU6eOsmXLFh/1AAAAAACQIMV6ErGOHTu+NDyHhobq5MmTb1wUAAAAAAAJjaEAXbFiRZ04ccJq2fz583Xnzh2rZX/99Zfq168fd9UBAAAAAJBAGArQt27d0tOnTy2Pnz17prFjx+rq1avxVhgAAAAAAAnJf/4caLPZHJd1AAAAAACQoP3nAA0AAAAAwPuEAA0AAAAAgAEEaAAAAAAADHijAG0ymeKqDsBmeB0nPiaTSSlSpKBtEyHaFgAA2FJSoxt27dpVDg4OVss6deoke3t7y+Pw8PC4qwx4CxwcHJQiRQpbl4E4liJFChUpUsTWZSAe0La2ZTabefMCAPBeMxSg+WxnJGZHzt3Qw9Cnr98QAN5jTsnt5Z4ns63LAADApgwFaH9///iuA7CZh6FP9SCE0RMAAAAAXo1JxAAAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAUltXQAAAEjcIiMjtWLFCi1dulSXLl1S+vTp9eGHH6p79+5KlSqVJOnw4cMaO3asLl26pNSpU8vb21s9e/a0rAcAICEgQAMAgHg1d+5cTZo0Se3atZOnp6fOnj2rKVOm6O+//9a8efP0zz//qHPnzipQoIDGjBmje/fuafz48bp06ZJmzpxp6/IBALCw+RBuLy8vubi4aP78+TGu//rrr+Xi4qKpU6dKktauXSsXF5e3UtulS5fk4uKiffv2SZL8/PzUokWLt3JuW4p6jl/2FRQU9NZquXv3rlatWvXWzgcAiFuRkZGaM2eOGjVqpD59+qh8+fJq1qyZhgwZol9++UV//vmnNm7cKJPJpD59+qhChQr67LPP1KtXL/3888+6fPmyrS8BAACLBNEDbW9vr61bt6pNmzZWyyMiIvTDDz/IZDJZlvn4+KhSpUpvu8T30u7du2Nc/jaH00UN5/vss8/e2jkBAHHn0aNHqlevnmrVqmW1PF++fJKkixcvKiwsTEmTJpWDg4Nlfdq0aSVJ9+7dU/bs2d9avQAAvEqCCNCenp7atWuXrl27pqxZs1qW//rrr3J0dFSKFCksy5InT67kyZPbosz3TqZMmWxdgsxms61LAAC8gdSpU2vQoEHRlm/btk2SlD9/fuXPn1+rVq3SkiVL1L9/f12+fFnTpk1TwYIFVahQobddMgAAL2XzIdyS5ObmpmzZsun777+3Wr5lyxbVqlXLqgf630O4d+zYoQYNGqh48eLy9PSUn5+f7t+/b1l//vx5de7cWaVKlVLZsmXVu3dv3b5927J+zZo1qlWrltzc3FSrVi0tXLhQkZGRhuo+ePCgWrZsqZIlS6pYsWKqVauW1q9fb1nv5+cnPz8/jRkzRp6enipevLg6duyo69evW7a5fv26evXqpdKlS6ts2bLq1KmTzp07Z3We4OBg1a1bV25ubvLy8tL06dP17NkzSdGHmce07Pbt2+revbvKli0rNzc3NW7cWPv37zd0jS9z8eJFFSpUSDt27LBaPmDAADVp0kSSFB4ernHjxqlSpUpyd3dXw4YNrXq1165dq+rVq1v+LVasmBo0aKBDhw5Znr9169Zp//79ljY/d+6c2rVrp1KlSsnd3V3t2rXTX3/99UbXAgB4u44eParZs2erWrVqKliwoAoWLKgePXpo69atqlatmnx9ffX48WPNnj1bSZIksXW5AABYJIgALUm1atWyCtDh4eHatm2bateu/dJ97ty5oy+++EKffPKJtmzZosDAQB04cEBjx46VJD148EDNmjVTeHi4Fi5cqPnz5+vChQvq2bOnJGnFihUaO3asvvjiC23evFk9e/bUnDlzNH78+NfWe/36dbVr106urq5at26dgoOD5ebmpoEDB+rWrVuW7TZt2qR79+5pyZIlmjNnjo4dO6ZJkyZJkp48eWK5p3rJkiVavHix0qVLp4YNG1pC9oIFCzR48GA1atRIGzZsUI8ePRQUFKTRo0cbfm6HDh2qsLAwLVmyRBs3blTevHnVpUsXPXnyxPAx/i1nzpwqU6aMNm3aZFkWFhamH374QQ0aNJD0PEzv2bNH48eP17p161SrVi116tRJ//vf/yz7XL16VcuXL9e4ceO0bt06pUiRQn5+fjKbzRo4cKBq1aold3d3S/Du3bu3smTJojVr1mjVqlWys7PTF1988Z+vAwDwdh06dEjt27dXjhw55O/vL0maPXu2Ro0aJW9vb82aNUsTJ05UypQp1bp1a6u/qQAA2FqCGMItPQ/QQUFBun79urJkyaI9e/Yoffr0KlKkyEv3uX79usLDw5UtWzZlz55d2bNn18yZMy29s1u2bNHjx48VEBCgNGnSSJK++eYbbd68WeHh4Zo+fbo6d+5sCek5c+bUo0ePNGzYMPXo0eOV9YaFhalbt25q166dpYe8Q4cOCg4O1rlz55QxY0ZJkpOTk4YPHy57e3s5OzvLx8fH0mu7efNmPXjwQOPGjVPSpM+bYuTIkdq3b59WrlypL774QnPmzFHz5s3VrFkzSVKePHl07949jRs3Tt27dzf03F64cEEFCxZUzpw5lTx5cg0cOFB16tR57bv67u7uMS7fs2ePHB0d1aBBAw0fPlwhISFKkSKFfvrpJz179ky1atXS+fPntWnTJgUHB6tw4cKSpDZt2ujkyZMKCgpS1apVJUlPnz7VsGHDrLbp2rWrbt68qcyZMyt58uSyt7e3DCe/cOGCypcvr+zZs8ve3l6jRo3SmTNnFBkZKTu7BPN+EAAgBlu2bJGfn5/y5MmjuXPnKl26dIqIiND06dPl4+Oj5s2bq3DhwnJ0dFTZsmXl7e2toKAg9e/f39alAwAgKQEF6GLFiilnzpzaunWrWrZsqS1btryy91mSChcuLF9fX3Xq1EmZMmVShQoVVLVqVVWvXl2SdOrUKeXJk8cSniWpUKFCKlSokO7cuaNr164pICBAkydPtqyPjIxUWFiYLl26pGTJkr303Lly5VKDBg20aNEinTp1ShcuXNDJkyclyRLgo7azt7e3PHZyctLTp08lScePH9f9+/dVpkwZq2OHhYXp9OnTunPnjm7duqVSpUpZrffw8NDTp0915swZZciQ4ZXPkSR98cUX6tevn7Zu3apSpUqpYsWK8vX1feX1Sc+Hjsck6p70GjVqaPjw4dq+fbt8fX21YcMGeXt7K1WqVNq1a5ckqWnTplb7Pn36VKlTp7Za5uzsbPneycnJsl1MevXqpVGjRmnp0qXy8PBQpUqV5OvrS3gGgAQuKChI48aNk4eHh6ZNm2b5fX/nzh2FhISoePHiVttnyJBBefPm1d9//22LcgEAiFGCCdDS/w/jbtSokbZv327o44smTJigrl27aufOnfrll1/Ur18/lSpVSgsXLrT06sYk6j7nAQMGqHz58tHWf/DBB7px48ZL9//nn3/UtGlTFS1aVOXLl9dHH32kdOnSRZst+sUZRWOqIW/evJoxY0a0dY6Oji+dQCuq9pdd34sBXpKqV6+uXbt2adeuXfrll180f/58BQYGauXKlSpQoMBL68udO/dL10XVWLNmTW3cuFEVK1bUrl27NHv2bEn/P/nXt99+q5QpU1rt9++wG9Nz9LJrb9asmWrWrKkdO3Zo7969mjJlimbMmKHg4GBLrz8AIGFZvny5xo4dKx8fH40ZM8bq936GDBmUNm1aHTlyRK6urpbld+7c0blz56IFawAAbClBddvVqlVLhw8f1po1a5QzZ06rnsmYHD16VKNGjVK+fPnUunVryz1Uv/76q27fvq38+fPr3LlzevjwoWWfY8eOydPTU0+fPlX69Ol18eJF5c6d2/L14j3Kr7J8+XJlyJBB8+fP1+eff64qVapY7tMyOnN0wYIFdeXKFTk5OVnOny1bNk2YMEEHDhxQxowZlTFjRsukWlEOHjwoe3t7q97tR48eWda/OAlZeHi4/P39dfHiRfn4+Oibb77Rtm3bZGdnZ3Uv8n/1ySefaM+ePZYAW65cOUmyBPObN29aPb9r167V2rVrDR//xQnkbt++reHDh+vp06dq0KCBxo0bpw0bNujmzZtvPCkaACB+3Lx5U/7+/sqePbuaNWum48eP67fffrN83b9/X926ddP333+voKAg7du3T1u2bFGbNm2UJEkStW3b1taXAACARYLqgS5cuLBy586tCRMmqGPHjq/dPlWqVFq6dKns7e3VsGFDhYWFacuWLcqTJ4/SpUunOnXqaPr06erXr5969uypiIgIDR06VAULFtQHH3ygzz//XBMnTlS2bNlUuXJl/fXXXxo6dKg+/PDDV/YcS1LWrFl17do17dixQ/nz59exY8f0zTffSHoeWo2oW7euZs+ere7du6tfv35KlSqVpk+frp07d1ruwW7Xrp0mTpyonDlzqkKFCvr9998VGBioRo0aycnJSalSpVL27Nm1cOFCy/3RkydPtgRPBwcH/fHHHzp48KAGDx6sjBkzaufOnXry5MlL73GOcvPmzRiXJ0uWzDIMu3Tp0vrggw80ZcoUtWjRwtK7XKBAAVWrVk1DhgzR119/rQIFCuj777/XrFmzLJPGGOHo6KgbN27o4sWL+uCDD/S///1PFy5cUJ8+fZQqVSqtXbtW9vb2KlasmOFjAgDenh07dig0NFSXL1+2zOfxIn9/fzVv3lzJkiXTnDlz1K1bN6VLl06lS5dWYGCgcubMaYOqAQCIWYIK0NLzXugZM2bIx8fntds6Oztr6tSpCgwM1NKlS2VnZ6dy5cppzpw5srOzU4oUKRQUFCR/f381btxYyZMnV9WqVS2TkbRt21bJkiXT4sWLNXr0aGXMmFENGzY0NDlXy5YtdebMGX355ZcKDw9Xnjx51Lt3b02ZMkV//PGHKleu/NpjODk5acmSJRo7dqzatWunZ8+eqWjRopo3b56l971t27ZycHDQwoULNWrUKGXNmlWff/652rVrJ+l5D+3YsWM1atQo1atXT7lz59aAAQPUoUMHy3kmTpwof39/de7cWQ8fPlS+fPk0fvx4lS5d+pX1VaxYMcblVatW1axZsyyP69evr8mTJ1tm337xvBMnTtTXX3+t+/fvK1euXBo5cqTq16//2ucmyscff6wff/xRvr6++uGHHzRnzhyNGTNGrVu3VkhIiAoXLqzZs2crV65cho8JAHh7Pv30U3366aev3a527drKly+fZRIxAAASIpPZ6HhjIJH5448/JEl37dPrQYixUQMA8L5KncJBlQtlj7fjP3nyRCdOnCBAJ0K0beJF2yZe72PbRmWDF+fjiEmCugcaAAAAAICEigANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYkNTWBQC25pTc3tYlAECCx+9KAAAI0IDc82S2dQkA8E4wm80ymUy2LgMAAJthCDfea+Hh4QoJCbF1GYhjISEhOn78OG2bCNG2tkV4BgC87wjQeO+ZzWZbl4A4ZjabFRISQtsmQrQtAACwJQI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQeO+ZTCZbl4A4ZjKZlCJFCto2EaJtAQCALSW1dQGALTk4OChFihS2LgNxLEWKFCpSpIity0A8oG3jltls5s0IAABigQCN9961u08UHhFp6zIA4K1ySGqnrOkcbV0GAADvFAI03nvhEZEKI0ADAAAAeA3ugQYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwIKmtCwAAAO+WyMhIrVixQkuXLtWlS5eUPn16ffjhh+revbtSpUolFxeXl+7r4eGhxYsXv8VqAQCIOwRoAAAQK3PnztWkSZPUrl07eXp66uzZs5oyZYr+/vtvzZs3TytWrIi2zw8//KCgoCA1adLEBhUDABA3CNA25OXlpcuXL1sem0wmOTo6qkiRIurRo4fKlCnzRsc/dOiQzGazSpcu/crt1q1bp1WrVunUqVOSpAIFCqh169aqUaOGVa3169dXt27d3qgmAMC7LTIyUnPmzFGjRo3Up08fSVL58uWVLl069erVS3/++adKlChhtc/Vq1e1atUqNWvWTD4+PjaoGgCAuME90DbWtm1b7d69W7t379bOnTu1fPlypUqVSu3bt9eVK1fe6NhNmzbVhQsXXrrebDarR48eGj16tHx8fLR8+XKtWLFClStXVq9evTR79uw3Oj8AIPF59OiR6tWrJ19fX6vl+fLlkyRdvHgx2j6jR49WsmTJ1Lt377dSIwAA8YUeaBtzdHRUpkyZLI8zZ86sYcOGqXLlyvrxxx/VqlWreDv30qVL9eOPP2rVqlUqWrSoZXnnzp317NkzTZkyRb6+vsqWLVu81QAAeLekTp1agwYNirZ827ZtkqT8+fNbLf/tt9/0/fffy9/fX6lSpXorNQIAEF/ogU6AkiZ9/r6Gg4ODJCk0NFSTJk3Shx9+KFdXV9WrV09bt261bL927VpVr15d33zzjUqVKqUuXbpYJnAZMGCA/Pz8YjzP8uXLVbVqVavwHKVVq1ZasGCBMmbMGOO+R44cUcuWLVWqVCmVLVtWAwYM0N27dy3rf//9dzVt2lTu7u4qU6aMunXrZulRv3TpklxcXLRv3z7L9v9e5ufnp+7du6tt27YqWbKk5syZI0n6+eef1aBBA7m5ual69eqaNGmSwsPDjT2xAIB4cfToUc2ePVvVqlVTwYIFrdbNnTtX2bNnV926dW1UHQAAcYcAncBcv35dw4cPl6Ojo6pUqSJJ6t27t4KDgzV48GBt2LBB3t7e6tGjh+Xdfkm6cOGCbty4oeDgYPXq1Uu7d++WJH311VcaOHBgtPOEhYXp1KlTKlmyZIx1ODk5qXTp0pYQ/6Lff/9dLVq0UIECBbRy5UpNnjxZR48eVbt27fTs2TM9e/ZMHTt2VJkyZbRhwwYtWLBAV65c0VdffRWr52Lr1q0qX7681qxZI19fX+3cuVM9e/ZUw4YNtWnTJg0ZMkTfffed+vXrF6vjAgDizqFDh9S+fXvlyJFD/v7+VuuuXbum7du3q1WrVpY3hwEAeJfx18zGZs2apXnz5kmSIiIiFB4eLmdnZ02aNEnZsmXT6dOntX37ds2cOVNVq1aVJHXr1k0nT57UzJkz5e3tbTlWly5dlDNnTqvjOzk5ycnJKdp579+/L0lKkyZNrGueN2+eXFxcNHjwYEmSs7OzAgICVK9ePe3evVslSpTQ3bt3lTlzZmXPnl05c+bUpEmTdPv27VidJ02aNGrfvr3lcZ8+fdSwYUM1btxYkpQrVy4NGzZMrVq10qVLl5QjR45YXwsA4L/bsmWL/Pz8lCdPHs2dO1fp0qWzWv/DDz/IZDKpdu3aNqoQAIC4RYC2scaNG6tFixaSJDs7O6VNm9Yq8P7111+SpFKlSlntV6ZMGQUEBFgty5Mnj+Hzpk2bViaTyWrYtVGnTp1ShQoVrJYVKlRITk5O+uuvv1SlShW1b99eI0aM0JQpU1SuXDlVqVJFtWrVitV5cufObfX4+PHj+v3337V69WrLMrPZLEk6ffo0ARoA3qKgoCCNGzdOHh4emjZtWoxv1v7vf/9T6dKlX3o7EAAA7xoCtI2lSZMmWlA0wmw2RxsOlzx5csP7Ozg4qFixYjp8+HCM6x88eKAvvvhCX3zxhTw8PKKd+2U12dvbS5L69u2rpk2baseOHdq7d69GjBihuXPnKjg4OMZ9nz17Fm3Zv68nMjJS7du3V/369aNt++JEbACA+LV8+XKNHTtWPj4+GjNmTIy3+5jNZv3+++9q3ry5DSoEACB+cA90Ahc1GdihQ4eslh88eDDaTKex1bBhQ+3cuVPHjh2Ltm7RokU6ePBgjL26Li4u0eo5efKkHj16JGdnZ505c0ZDhgxRhgwZ1KRJE02ZMkVz587V6dOndfLkSUvIfvTokWX/c+fOvbbeAgUK6OzZs8qdO7fl69q1axo7dqweP34cy6sHAPwXN2/elL+/v7Jnz65mzZrp+PHj+u233yxfd+7ckSRduXJFDx8+fOO/VQAAJCT0QCdwzs7OqlatmoYNGyaTyaTcuXNr8+bN2r59uyZNmvTKfR0dHXX69GndvXs32n1pkvTpp59q+/btatOmjXr06KEKFSooNDRUGzZs0Pz589W/f/8YP8KqTZs2atq0qUaMGKGmTZvq1q1bGjFihIoUKSJPT089evRImzdvVmhoqDp06CA7OzutW7dOadKkUb58+ZQyZUplz55dCxcuVJ48eXTv3j1NnjxZJpPpldfz+eefq2fPngoMDFTt2rV17do1DRw4UDly5KAHGgDekh07dig0NFSXL19Ws2bNoq339/dXgwYNLPNepE6d+m2XCABAvCFAvwMCAgIUEBCggQMH6sGDBypYsKCmTp2q6tWrv3K/tm3bWnp+Z86cGW29nZ2dpk2bpiVLlmjVqlWaMGGCkiZNqgIFCigwMFAffvhhjMctXry45s6dq0mTJunjjz9WqlSp5O3trT59+sje3l7p0qXTnDlzNGHCBDVs2FDPnj1TiRIlNH/+fMtngI4dO1ajRo1SvXr1lDt3bg0YMEAdOnR45fXUrFlTEydO1KxZszRz5kylTZtWXl5e6tu3r8FnEgDwpj799FN9+umnr93Ozc3NMo8HAACJhcn8shtagUTujz/+kCSlyZpXYRGRNq4GAN6uZEntlCtTKluXYfHkyROdOHFChQsXlqOjo63LQRyibRMv2jbxeh/bNiobuLq6vnI77oEGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMSGrrAgBbc0jK+0gA3j/87gMAIPYI0HjvZU3naOsSAMAmzGazTCaTrcsAAOCdwdvPeK+Fh4crJCTE1mUgjoWEhOj48eO0bSJE28YtwjMAALFDgMZ7z2w227oExDGz2ayQkBDaNhGibQEAgC0RoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAANMZqYyxXvq8OHDMpvNsre356NcEhmz2aynT5/StokQbZt40baJF22beNG2idf72Lbh4eEymUwqWbLkK7dL+pbqARKcqF8G78svhfeJyWSSg4ODrctAPKBtEy/aNvGibRMv2jbxeh/b1mQyGcoF9EADAAAAAGAA90ADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNN47kZGRmjJliipVqqQSJUro888/18WLF21dFt7QrFmz1KJFC6tlJ06cUPPmzVWiRAl5eXlp0aJFNqoOsXXv3j19/fXXqly5skqWLKkmTZro4MGDlvV79+5VgwYNVLx4cdWsWVObN2+2YbWIjdu3b6tfv34qV66c3N3d1aFDB50+fdqynp/bxOHs2bNyd3fX2rVrLcto23fX9evX5eLiEu0rqn1p23dbcHCwfHx85Orqqtq1a+u7776zrLt06ZI6duyokiVLqmLFipo0aZKePXtmw2ptjwCN98706dO1dOlSjRgxQsuXL1dkZKTat2+v8PBwW5eG/+jbb7/VpEmTrJbdvXtXbdq0Ua5cubRmzRp17dpV48eP15o1a2xTJGKld+/eOnLkiAICArRmzRoVLlxY7dq105kzZ3T69Gl17NhRlSpV0tq1a/XZZ5/pyy+/1N69e21dNgzo2rWrzp8/r9mzZ2v16tVKnjy5WrdurZCQEH5uE4mnT5+qb9++evLkiWUZbftuO3nypJIlS6Zdu3Zp9+7dli8fHx/a9h23fv16DRw4UM2aNdPmzZvl6+tr+Rv89OlTtWvXTpK0fPlyDR06VMuWLdO0adNsXLVtJbV1AcDbFB4ernnz5qlv376qWrWqJGnixImqVKmSfvjhB/n6+tq2QMTK9evXNWTIEO3bt0958uSxWrdy5UrZ29tr+PDhSpo0qZydnS3/af/kk09sUzAMOX/+vPbs2aOlS5eqVKlSkqTBgwdr165d2rhxo27fvi0XFxf16tVLkuTs7Kzjx49r7ty58vT0tGXpeI379+8re/bs6tixowoWLChJ6tKli+rVq6e///5be/fu5ec2EZg6dapSpUpltYzfye+2U6dOKU+ePMqcOXO0dQsXLqRt31Fms1mTJ09Wy5Yt1axZM0lS586ddfDgQe3fv1+XL1/WlStXtHLlSqVJk0YFCxbU7du3NXbsWHXq1EkODg42vgLboAca75WTJ0/q8ePHVv/JTp06tYoUKaIDBw7YsDL8F8eOHZO9vb02bNig4sWLW607ePCgPDw8lDTp/79PWK5cOZ07d063bt1626UiFtKlS6fZs2fL1dXVssxkMslkMunBgwc6ePBgtKBcrlw5HTp0SGaz+W2Xi1hIkyaNJkyYYAnPd+7c0YIFC5Q1a1blz5+fn9tE4MCBA1qxYoVGjx5ttZy2fbf99ddfcnZ2jnEdbfvuOnv2rC5fvqw6depYLQ8KClLHjh118OBBFS1aVGnSpLGsK1eunB49eqQTJ0687XITDAI03ivXrl2TJH3wwQdWyzNnzmxZh3eHl5eXpk6dqpw5c0Zbd+3aNWXNmtVqWdQ751evXn0r9eG/SZ06tapUqWL1zvbWrVt1/vx5VapU6aVtGzUEGO+GwYMHy9PTU5s3b9bIkSPl6OjIz+077sGDB/ryyy81aNCgaH9nadt326lTp3Tnzh01a9ZM5cuXV5MmTbRz505JtO277OzZs5KkJ0+eqF27dvL09NRnn32mn376SRJt+zIEaLxXQkJCJCnakJNkyZIpLCzMFiUhnoSGhsbYzpJo63fM4cOHNWDAAH300UeqWrVqjG0b9Zi5DN4drVq10po1a+Tr66uuXbvq2LFj/Ny+44YOHSp3d/dovVkSv5PfZRERETpz5ozu37+vbt26afbs2SpRooQ6dOigvXv30rbvsEePHkmS+vfvL19fX82bN08VKlRQly5daNtX4B5ovFeSJ08u6fl/sqO+l57/EkiRIoWtykI8SJ48ebQwFfXL3tHR0RYl4T/Ytm2b+vbtq5IlS2r8+PGSnv/x/nfbRj3m5/jdkT9/fknSyJEjdfToUS1ZsoSf23dYcHCwDh48qI0bN8a4nrZ9dyVNmlT79u1TkiRJLP93KlasmP7++28FBQXRtu8we3t7SVK7du1Uv359SVLhwoV1/PhxzZ8/n7Z9CXqg8V6JGlJ248YNq+U3btxQlixZbFES4knWrFljbGdJtPU7YsmSJerWrZuqVaummTNnWt71/uCDD2JsW0dHRzk5OdmiVBh0584dbd68WREREZZldnZ2yp8/v27cuMHP7TtszZo1un37tqpWrSp3d3e5u7tLkoYMGaL27dvTtu+4lClTWnU8SFKBAgV0/fp12vYdFtU+UfNSRMmfP78uXbpE274EARrvlUKFCilVqlTat2+fZdmDBw90/PhxlSlTxoaVIa6VKVNGhw4dsvqswl9//VV58+ZVhgwZbFgZjIj6qLlmzZopICDAaghZ6dKltX//fqvtf/31V5UsWVJ2dvxZS8hu3bql3r17W33k2NOnT3X8+HE5Ozvzc/sOGz9+vLZs2aLg4GDLlyR1795dI0eOpG3fYX///bdKlixp9X8nSfrzzz+VP39+2vYdVrRoUaVMmVJHjx61Wn7q1CnlypVLZcqU0fHjxy1DvaXnbZsyZUoVKlTobZebYPA/DbxXHBwc1Lx5c40fP17bt2/XyZMn1atXL2XNmlUfffSRrctDHPrkk0/06NEjDRw4UP/884/Wrl2rBQsWqGPHjrYuDa9x9uxZjRo1StWrV1fHjh1169Yt3bx5Uzdv3tTDhw/VokUL/f777xo/frxOnz6tefPm6fvvv1f79u1tXTpeo2DBgqpcubK++eYbHThwQKdOnZKfn58ePHig1q1b83P7DsuSJYty585t9SVJGTJkUJYsWWjbd5izs7Py5cun4cOH6+DBgzp9+rT8/f3122+/qXPnzrTtOyx58uRq3769pk2bpk2bNunChQuaMWOG9uzZozZt2sjb21uZMmVSz549dfLkSW3btk0BAQFq27bte/sRVpJkMvOZH3jPPHv2TAEBAVq7dq1CQ0NVpkwZff3118qRI4etS8Mb8PPz0+XLl7V48WLLst9//10jR47U8ePHlSlTJrVt21bNmze3YZUwYubMmZo4cWKM6+rXr6/Ro0dr586dGjdunM6dO6ccOXKoW7du8vHxecuV4r94+PChJkyYoG3btunhw4cqXbq0/Pz8VKBAAUn83CYmLi4u8vf3V4MGDSTRtu+yW7duacKECdq1a5cePHigIkWKqG/fvipdurQk2vZdN3/+fC1ZskTXr1+Xs7OzunXrJm9vb0nS+fPnNWzYMB08eFBp0qTRp59+qm7dur3XI74I0AAAAAAAGPD+vnUAAAAAAEAsEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAACJHJ9aCgBxgwANAMB7rEWLFipSpIj++OOPGNd7eXnJz8/vrdTi5+cnLy+vt3Ku2IiIiJCfn5/c3d1VsmRJ/frrr9G2uXTpklxcXF75tWzZsrde+4MHD/Tll1/q4MGDb/3cAJAYJbV1AQAAwLaePXumAQMGaO3atXJwcLB1OQnOrl27tG7dOnXp0kXly5dXkSJFXrpt586dVbVq1RjX5cyZM54qfLkTJ05o/fr1+uSTT976uQEgMSJAAwDwnnNyctLff/+tadOmqVevXrYuJ8G5d++eJKlBgwavDcG5cuVSiRIl4r8oAIBNMIQbAID3XOHChfXxxx9r7ty5+vPPP1+5rYuLi6ZOnWq1bOrUqXJxcbE89vPzU7t27bRixQp5e3vLzc1NjRs31tmzZ/Xzzz+rTp06Kl68uD777DOdOHEi2jlWrFihqlWrys3NTa1atdLx48et1l+5ckW9e/eWh4eHihcvHm2bqOHU8+fPV82aNVW8eHGtWbMmxut59uyZvv32W9WpU0dubm6qWrWqxo8fr7CwMMu1RA1h9/b2VosWLV75/LxOWFiYSpUqpTFjxlgtj4iIULly5fTNN99Ylq1atUq1a9dWsWLFVLVqVU2dOlXPnj2zrPfz81Pr1q21Zs0a1ahRQ8WKFVO9evW0c+dOSdK+ffvUsmVLSVLLli0ttV+4cEGdOnVS2bJlVbx4cTVq1Eg7dux4o+sCgPcFARoAAOirr75SunTpNGDAAIWHh7/x8Y4cOaIlS5bIz89P/v7+On36tDp06CB/f3917NhRAQEBunr1qvr27Wu137Vr1xQYGKiePXsqICBA9+/fV4sWLXTlyhVJ0p07d9S4cWMdO3ZMgwcP1oQJExQZGalmzZrp9OnTVseaOnWqPv/8c40dO1YVKlSIsc6vv/5a/v7+8vb21owZM9SsWTMtWbJEXbp0kdlsVpcuXdS5c2dJUmBgoIYMGfLK646MjFRERES0r6jgmyxZMtWoUUPfffed1cRee/bs0d27d1WvXj1J0qxZszR48GB5enpq5syZatasmebMmaPBgwdbne/PP/9UUFCQunfvrmnTpilJkiTq1q2b7t+/r6JFi+rrr7+2XOeQIUMUGRmpjh07KiQkRGPHjtX06dOVNm1ade7cWefPn3/ltQEAGMINAAAkpUmTRsOHD1fnzp3jZCj348ePNWnSJDk7O0uS9u/fr+XLl2vBggXy9PSUJJ0/f15jxozRgwcPlDp1aknPe4SnTZsmNzc3SVLx4sXl7e2txYsXq3///lq4cKHu3bunZcuWKXv27JKkypUry8fHR5MnT9aUKVMsNdSqVeuV9/7+888/Wr16tfr06aMOHTpIkipUqKDMmTPryy+/1M6dO1WlShXlypVL0vOe+hw5crzyugcOHKiBAwdGW+7o6KgjR45IkurVq6c1a9bo0KFDKl26tCRp8+bNypcvn1xdXfXw4UNNnz5djRo10qBBgyRJFStWVNq0aTVo0CC1adNGBQoUkCQ9fPhQa9eutdTo6Oio5s2b69dff1WNGjWUP39+SVL+/PmVP39+3bx5U2fOnFGXLl1UpUoVSZKbm5sCAwPj5I0TAEjsCNAAAEDS8xm369atq7lz5+qjjz5S0aJF//Ox0qRJYwnPkpQxY0ZJzwNxlLRp00qSVYDOmTOnJTxLUqZMmVSiRAkdOHBAkrR3714VLlxYWbJkUUREhCTJzs5OlStX1oYNG6xqKFy48Ctr3L9/vySpdu3aVstr166tAQMGaN++fZaQadQXX3wR4yRiSZIksXzv4eGhbNmyafPmzSpdurTCwsK0bds2S4g/cuSIQkND5eXlZblGSZYZyvfs2WMJ0OnTp7eEZ0nKmjWrJCkkJCTG+jJmzKj8+fNr8ODB2r17typWrKjKlStrwIABsbpOAHhfEaABAIDFoEGDtHfvXg0YMOCl9w0bkSpVqhiXOzo6vnK/qKD9ogwZMujq1auSnk/odf78+ZeG+xeD4+vOdf/+fUnPQ/qLkiZNqnTp0unhw4ev3D8m2bNnl6ur6yu3MZlMqlOnjlatWqVBgwbp559/1pMnT1SnTh1J/z9pWVSg/rcbN25Yvk+RIkW0Y0vPh5K/7Nzz5s3TjBkz9OOPPyo4OFj29vby9vbWsGHDlCZNGkPXCQDvKwI0AACwSJMmjYYOHaquXbtq+vTpMW7z4kRWkvTkyZM4O39UqH3RzZs3lT59eknPZwz38PDQl19+GeP+sfkYrqiwePPmTctwcEl6+vSp7t69q3Tp0sWm9FipV6+eZs2apX379mnLli0qU6aMpYao3vjx48crT5480faN6U2G2MiSJYuGDh2qIUOG6OTJk/r+++81Z84cpUuX7rX3eAPA+45JxAAAgBVvb2/5+vpq9uzZunPnjtW6VP/X3t2DNLKFYRx/skS0WJkE/CiT4AcakRSiIYKgWCgSFMVag9goCkZBUBCCkEIhQkRIodgpIioEjLUiiJURm5SBIEjASgURDLvFcofN1b13wrW7/x9MMecMnDnTPcx7zvn+Xfl8vqjt5ubmy8bOZrPK5XLm/cPDg9LptPx+v6Rf5c/ZbFYej0etra3mlUwmdXR0VFQq/W86Ojok/Vp//LtUKqVCoaC2trYvmNHn6urq1NLSolQqpYuLCw0ODpp9Pp9PZWVlyufzRXO02+3a2NjQ/f295XH+/j3S6bQ6Ozt1d3cnm82m5uZmhcNhNTY2mhu1AQD+jD/QAADgg5WVFV1fX+vx8bGovbu7W6lUSj6fTy6XSycnJ1+6e3N5ebmmpqYUDodVKBQUj8flcDg0Pj4uSQqFQkomkwqFQpqYmJDT6dTZ2ZkODw9LXsdbX1+v4eFhbW5u6vX1Ve3t7cpkMtra2pLf71dXV1fJ75/L5XR7e/tpn2EY8ng85v3Q0JDW1tZkt9vV399vtjudTk1OTioej+vl5UV+v1/5fF7xeFw2m01NTU2W36eyslKSdH5+LsMw5PV6VVFRocXFRc3OzqqqqkpXV1fKZDLmkVcAgD8jQAMAgA8cDocikYhmZmaK2peWlvT+/m4Gv4GBAS0sLJi7Rf9XXq9XfX19ikQien5+ViAQ0PLyslnCXVtbq4ODA8ViMUUiEb29vcntdisajWp0dLTk8aLRqFwul46Pj7W9va2amhqNjY1penpa376VXqiXSCSUSCQ+7evt7S0qiw8Gg1pfX1dPT48ZdP8yNzen6upq7e/va2dnR4ZhKBAIaH5+/sOz/6ShoUHBYFB7e3u6vLzU6empdnd3FYvFFI1G9fT0JLfbrdXVVY2MjJQ8XwD4v7H9+P0QQgAAAAAA8CnWQAMAAAAAYAEBGgAAAAAACwjQAAAAAABYQIAGAAAAAMACAjQAAAAAABYQoAEAAAAAsIAADQAAAACABQRoAAAAAAAsIEADAAAAAGABARoAAAAAAAsI0AAAAAAAWECABgAAAADAgp86rb8HdDLhsQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "# Apply seaborn style\n", "sns.set_style(\"whitegrid\")\n", "\n", "# Plot for China\n", "plt.figure(figsize=(10, 6))\n", "ax_china = sns.barplot(x='count', y='Category', data=china_plot_data, palette='Oranges_r')\n", "plt.title('Top 5 Event Categories in China')\n", "plt.xlabel('Number of Events')\n", "plt.ylabel('Event Category')\n", "\n", "# Loop through the bars and add text annotation\n", "for p in ax_china.patches:\n", " width = p.get_width()\n", " plt.text(width + 1, # x position, shifted +1 to the right for spacing\n", " p.get_y() + p.get_height() / 2, # y position, at the center of the bar\n", " f'{int(width)}', # text label, the count of events\n", " va='center') # center alignment\n", "\n", "plt.show()\n", "\n", "# Plot for United States\n", "plt.figure(figsize=(10, 6))\n", "ax_us = sns.barplot(x='count', y='Category', data=us_plot_data, palette='Blues_r')\n", "plt.title('Top 5 Event Categories in the United States')\n", "plt.xlabel('Number of Events')\n", "plt.ylabel('Event Category')\n", "\n", "# Loop through the bars and add text annotation for the US plot\n", "for p in ax_us.patches:\n", " width = p.get_width()\n", " plt.text(width + 1, # x position, shifted +1 to the right for spacing\n", " p.get_y() + p.get_height() / 2, # y position, at the center of the bar\n", " f'{int(width)}', # text label, the count of events\n", " va='center') # center alignment\n", "\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 2 }