import os import torch import cv2 import numpy as np import subprocess from PIL import Image from gfpgan.utils import GFPGANer from basicsr.archs.srvgg_arch import SRVGGNetCompact from realesrgan.utils import RealESRGANer def runcmd(cmd, verbose = False, *args, **kwargs): process = subprocess.Popen( cmd, stdout = subprocess.PIPE, stderr = subprocess.PIPE, text = True, shell = True ) std_out, std_err = process.communicate() if verbose: print(std_out.strip(), std_err) pass if not os.path.exists('GFPGANv1.4.pth'): runcmd("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('realesr-general-x4v3.pth'): runcmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") os.makedirs('output', exist_ok=True) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2) def enhance_image( input_image: Image, scale: int, enhance_mode: int, keep_size: bool = False, ): only_face = enhance_mode == 1 enhance_face = enhance_mode != 2 if enhance_mode == 1: face_enhancer.upscale = scale face_enhancer.bg_upsampler = None elif enhance_mode == 2: pass else: face_enhancer.upscale = scale face_enhancer.bg_upsampler = upsampler img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) max_size = 3480 / scale if h > max_size: w = int(w * max_size / h) h = max_size if w > max_size: h = int(h * max_size / w) w = max_size if h != img.shape[0] or w != img.shape[1]: img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LANCZOS4) if enhance_face: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=only_face, paste_back=True) else: output, _ = upsampler.enhance(img, outscale=scale) h, w = img.shape[0:2] interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 if keep_size: output = cv2.resize(output, (w, h), interpolation=interpolation) elif scale != 2: output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) return pil_output