zhiweili commited on
Commit
df75ec5
·
1 Parent(s): bc088da

add enhanceface

Browse files
Files changed (3) hide show
  1. app_makeup.py +4 -2
  2. enhance_utils.py +18 -5
  3. segment_utils.py +1 -1
app_makeup.py CHANGED
@@ -34,6 +34,7 @@ def image_to_image(
34
  canny_scale: float,
35
  lineart_detect: float,
36
  canny_detect: float,
 
37
  ):
38
  w2 = 1.0
39
  run_task_time = 0
@@ -57,7 +58,7 @@ def image_to_image(
57
  canny_detect,
58
  )
59
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
60
- enhanced_image = enhance_image(generated_image, False)
61
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
62
 
63
  return enhanced_image, generated_image, time_cost_str
@@ -89,6 +90,7 @@ def create_demo() -> gr.Blocks:
89
  generate_size = gr.Number(label="Generate Size", value=1024)
90
  mask_expansion = gr.Number(label="Mask Expansion", value=10, visible=True)
91
  mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
 
92
  lineart_scale = gr.Slider(minimum=0, maximum=5, value=0.8, step=0.1, label="Lineart Weights", visible=True)
93
  canny_scale = gr.Slider(minimum=0, maximum=5, value=0.4, step=0.1, label="Canny Weights", visible=True)
94
  lineart_detect = gr.Number(label="Lineart Detect", value=0.375, visible=True)
@@ -116,7 +118,7 @@ def create_demo() -> gr.Blocks:
116
  outputs=[origin_area_image, croper],
117
  ).success(
118
  fn=image_to_image,
119
- inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, lineart_scale, canny_scale, lineart_detect, canny_detect],
120
  outputs=[enhanced_image, generated_image, generated_cost],
121
  ).success(
122
  fn=restore_result,
 
34
  canny_scale: float,
35
  lineart_detect: float,
36
  canny_detect: float,
37
+ enhance_face: bool = True,
38
  ):
39
  w2 = 1.0
40
  run_task_time = 0
 
58
  canny_detect,
59
  )
60
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
61
+ enhanced_image = enhance_image(generated_image, enhance_face)
62
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
63
 
64
  return enhanced_image, generated_image, time_cost_str
 
90
  generate_size = gr.Number(label="Generate Size", value=1024)
91
  mask_expansion = gr.Number(label="Mask Expansion", value=10, visible=True)
92
  mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
93
+ enhance_face = gr.Checkbox(label="Enhance Face", value=False)
94
  lineart_scale = gr.Slider(minimum=0, maximum=5, value=0.8, step=0.1, label="Lineart Weights", visible=True)
95
  canny_scale = gr.Slider(minimum=0, maximum=5, value=0.4, step=0.1, label="Canny Weights", visible=True)
96
  lineart_detect = gr.Number(label="Lineart Detect", value=0.375, visible=True)
 
118
  outputs=[origin_area_image, croper],
119
  ).success(
120
  fn=image_to_image,
121
+ inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, lineart_scale, canny_scale, lineart_detect, canny_detect, enhance_face],
122
  outputs=[enhanced_image, generated_image, generated_cost],
123
  ).success(
124
  fn=restore_result,
enhance_utils.py CHANGED
@@ -2,19 +2,32 @@ import os
2
  import torch
3
  import cv2
4
  import numpy as np
 
5
 
6
  from PIL import Image
7
  from gfpgan.utils import GFPGANer
8
  from basicsr.archs.srvgg_arch import SRVGGNetCompact
9
  from realesrgan.utils import RealESRGANer
10
 
11
- os.system("pip freeze")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  if not os.path.exists('GFPGANv1.4.pth'):
13
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
14
  if not os.path.exists('realesr-general-x4v3.pth'):
15
- os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
16
-
17
- os.makedirs('output', exist_ok=True)
18
 
19
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
20
  model_path = 'realesr-general-x4v3.pth'
 
2
  import torch
3
  import cv2
4
  import numpy as np
5
+ import subprocess
6
 
7
  from PIL import Image
8
  from gfpgan.utils import GFPGANer
9
  from basicsr.archs.srvgg_arch import SRVGGNetCompact
10
  from realesrgan.utils import RealESRGANer
11
 
12
+ def runcmd(cmd, verbose = False, *args, **kwargs):
13
+
14
+ process = subprocess.Popen(
15
+ cmd,
16
+ stdout = subprocess.PIPE,
17
+ stderr = subprocess.PIPE,
18
+ text = True,
19
+ shell = True
20
+ )
21
+ std_out, std_err = process.communicate()
22
+ if verbose:
23
+ print(std_out.strip(), std_err)
24
+ pass
25
+
26
+ runcmd("pip freeze")
27
  if not os.path.exists('GFPGANv1.4.pth'):
28
+ runcmd("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
29
  if not os.path.exists('realesr-general-x4v3.pth'):
30
+ runcmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
 
 
31
 
32
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
33
  model_path = 'realesr-general-x4v3.pth'
segment_utils.py CHANGED
@@ -30,7 +30,7 @@ def restore_result(croper, category, generated_image):
30
  extension = 'jpg'
31
 
32
  path = f"output/{uuid.uuid4()}.{extension}"
33
- restored_image.save(path)
34
 
35
  return restored_image, path
36
 
 
30
  extension = 'jpg'
31
 
32
  path = f"output/{uuid.uuid4()}.{extension}"
33
+ restored_image.save(path, quality=100)
34
 
35
  return restored_image, path
36