import requests from PIL import Image from io import BytesIO from diffusers import StableDiffusionUpscalePipeline import torch import gradio as gr import time import spaces from segment_utils import( segment_image, restore_result, ) device = "cuda" if torch.cuda.is_available() else "cpu" print(f'{device} is available') model_id = "stabilityai/stable-diffusion-x4-upscaler" upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) upscale_pipe = upscale_pipe.to(device) DEFAULT_SRC_PROMPT = "a person with pefect face" DEFAULT_CATEGORY = "face" def create_demo() -> gr.Blocks: @spaces.GPU(duration=30) def upscale_image( input_image: Image, prompt: str, num_inference_steps: int = 10, ): time_cost_str = '' run_task_time = 0 run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) upscaled_image = upscale_pipe( prompt=prompt, image=input_image, num_inference_steps=num_inference_steps, ).images[0] run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) return upscaled_image, time_cost_str def get_time_cost(run_task_time, time_cost_str): now_time = int(time.time()*1000) if run_task_time == 0: time_cost_str = 'start' else: if time_cost_str != '': time_cost_str += f'-->' time_cost_str += f'{now_time - run_task_time}' run_task_time = now_time return run_task_time, time_cost_str with gr.Blocks() as demo: croper = gr.State() with gr.Row(): with gr.Column(): input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) with gr.Column(): num_inference_steps = gr.Number(label="Num Inference Steps", value=5) generate_size = gr.Number(label="Generate Size", value=512) g_btn = gr.Button("Upscale Image") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") with gr.Column(): restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False) origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False, visible=False) upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False) download_path = gr.File(label="Download the output image", interactive=False) generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) mask_expansion = gr.Number(label="Mask Expansion", value=20, visible=False) mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation", visible=False) g_btn.click( fn=segment_image, inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], outputs=[origin_area_image, croper], ).success( fn=upscale_image, inputs=[origin_area_image, input_image_prompt, num_inference_steps], outputs=[upscaled_image, generated_cost], ).success( fn=restore_result, inputs=[croper, category, upscaled_image], outputs=[restored_image, download_path], ) return demo