import os import subprocess import spaces import torch import cv2 import uuid import gradio as gr import numpy as np from PIL import Image from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from realesrgan.utils import RealESRGANer def runcmd(cmd, verbose = False): process = subprocess.Popen( cmd, stdout = subprocess.PIPE, stderr = subprocess.PIPE, text = True, shell = True ) std_out, std_err = process.communicate() if verbose: print(std_out.strip(), std_err) pass if not os.path.exists('GFPGANv1.4.pth'): runcmd("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('realesr-general-x4v3.pth'): runcmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) @spaces.GPU(duration=15) def enhance_image( input_image: Image, scale: int, enhance_mode: str, ): only_face = enhance_mode == "Only Face Enhance" if enhance_mode == "Only Face Enhance": face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=scale, arch='clean', channel_multiplier=2) elif enhance_mode == "Only Image Enhance": face_enhancer = None else: face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) if face_enhancer is not None: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=only_face, paste_back=True) else: output, _ = upsampler.enhance(img, outscale=scale) # if scale != 2: # interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 # h, w = img.shape[0:2] # output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) h, w = output.shape[0:2] max_size = 3480 if h > max_size: w = int(w * max_size / h) h = max_size if w > max_size: h = int(h * max_size / w) w = max_size output = cv2.resize(output, (w, h), interpolation=cv2.INTER_LANCZOS4) enhanced_image = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) tmpPrefix = "/tmp/gradio/" extension = 'png' targetDir = f"{tmpPrefix}output/" if not os.path.exists(targetDir): os.makedirs(targetDir) enhanced_path = f"{targetDir}{uuid.uuid4()}.{extension}" enhanced_image.save(enhanced_path, quality=100) return enhanced_image, enhanced_path def create_demo() -> gr.Blocks: with gr.Blocks() as demo: with gr.Row(): with gr.Column(): scale = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Scale") with gr.Column(): enhance_mode = gr.Dropdown( label="Enhance Mode", choices=[ "Only Face Enhance", "Only Image Enhance", "Face Enhance + Image Enhance", ], value="Face Enhance + Image Enhance", ) g_btn = gr.Button("Enhance Image") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") with gr.Column(): output_image = gr.Image(label="Enhanced Image", type="pil", interactive=False) enhance_image_path = gr.File(label="Download the Enhanced Image", interactive=False) g_btn.click( fn=enhance_image, inputs=[input_image, scale, enhance_mode], outputs=[output_image, enhance_image_path], ) return demo