import requests from PIL import Image from io import BytesIO from diffusers import StableDiffusionUpscalePipeline import torch import gradio as gr device = "cuda" if torch.cuda.is_available() else "cpu" print(f'{device} is available') model_id = "stabilityai/stable-diffusion-x4-upscaler" upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) upscale_pipe = upscale_pipe.to(device) DEFAULT_SRC_PROMPT = "a person with pefect face" def create_demo() -> gr.Blocks: from inversion_run_base import run as base_run @spaces.GPU(duration=15) def upscale_image( input_image: Image, prompt: str, ): upscaled_image = upscale_pipe(prompt=prompt, image=input_image).images[0] extension = 'png' path = f"output/{uuid.uuid4()}.{extension}" upscaled_image.save(path, quality=100) return upscaled_image, path, time_cost_str def get_time_cost(run_task_time, time_cost_str): now_time = int(time.time()*1000) if run_task_time == 0: time_cost_str = 'start' else: if time_cost_str != '': time_cost_str += f'-->' time_cost_str += f'{now_time - run_task_time}' run_task_time = now_time return run_task_time, time_cost_str with gr.Blocks() as demo: croper = gr.State() with gr.Row(): with gr.Column(): input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) with gr.Column(): g_btn = gr.Button("Upscale Image") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") with gr.Column(): upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False) download_path = gr.File(label="Download the output image", interactive=False) generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) g_btn.click( fn=upscale_image, inputs=[input_image, input_image_prompt], outputs=[upscaled_image, download_path, generated_cost], ) return demo