Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
•
c823534
1
Parent(s):
9afe403
change to app_haircolor_inpaint_15
Browse files- app.py +1 -1
- app_haircolor_inpaint_15.py +6 -45
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from app_haircolor_inpaint_15 import create_demo as create_demo_haircolor
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
app_haircolor_inpaint_15.py
CHANGED
@@ -10,22 +10,12 @@ from segment_utils import(
|
|
10 |
restore_result,
|
11 |
)
|
12 |
from diffusers import (
|
13 |
-
|
14 |
-
ControlNetModel,
|
15 |
-
DDIMScheduler,
|
16 |
-
DPMSolverMultistepScheduler,
|
17 |
EulerAncestralDiscreteScheduler,
|
18 |
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
LineartDetector,
|
23 |
-
PidiNetDetector,
|
24 |
-
HEDdetector,
|
25 |
-
)
|
26 |
-
|
27 |
-
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
28 |
-
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
|
29 |
# BASE_MODEL = "SG161222/Realistic_Vision_V2.0"
|
30 |
|
31 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -35,34 +25,12 @@ DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res,
|
|
35 |
|
36 |
DEFAULT_CATEGORY = "hair"
|
37 |
|
38 |
-
|
39 |
-
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
40 |
-
lineart_detector = lineart_detector.to(DEVICE)
|
41 |
-
|
42 |
-
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
|
43 |
-
pidiNet_detector = pidiNet_detector.to(DEVICE)
|
44 |
-
|
45 |
-
hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
46 |
-
hed_detector = hed_detector.to(DEVICE)
|
47 |
-
|
48 |
-
controlnet = [
|
49 |
-
ControlNetModel.from_pretrained(
|
50 |
-
"lllyasviel/control_v11e_sd15_ip2p",
|
51 |
-
torch_dtype=torch.float16,
|
52 |
-
),
|
53 |
-
ControlNetModel.from_pretrained(
|
54 |
-
"lllyasviel/control_v11p_sd15_lineart",
|
55 |
-
torch_dtype=torch.float16,
|
56 |
-
),
|
57 |
-
]
|
58 |
-
|
59 |
-
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
60 |
BASE_MODEL,
|
61 |
torch_dtype=torch.float16,
|
62 |
-
use_safetensors=True,
|
63 |
-
controlnet=controlnet,
|
64 |
)
|
65 |
-
|
66 |
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
|
67 |
|
68 |
basepipeline = basepipeline.to(DEVICE)
|
@@ -84,11 +52,6 @@ def image_to_image(
|
|
84 |
run_task_time = 0
|
85 |
time_cost_str = ''
|
86 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
87 |
-
# canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
88 |
-
lineart_image = lineart_detector(input_image, 384, generate_size)
|
89 |
-
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
90 |
-
# pidiNet_image = pidiNet_detector(input_image, 512, generate_size)
|
91 |
-
control_image = [lineart_image, input_image]
|
92 |
|
93 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
94 |
generated_image = basepipeline(
|
@@ -97,12 +60,10 @@ def image_to_image(
|
|
97 |
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
98 |
image=input_image,
|
99 |
mask_image=mask_image,
|
100 |
-
control_image=control_image,
|
101 |
height=generate_size,
|
102 |
width=generate_size,
|
103 |
guidance_scale=guidance_scale,
|
104 |
num_inference_steps=num_steps,
|
105 |
-
controlnet_conditioning_scale=[cond_scale1, cond_scale2],
|
106 |
).images[0]
|
107 |
|
108 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
10 |
restore_result,
|
11 |
)
|
12 |
from diffusers import (
|
13 |
+
StableDiffusionInpaintPipeline,
|
|
|
|
|
|
|
14 |
EulerAncestralDiscreteScheduler,
|
15 |
)
|
16 |
|
17 |
+
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
18 |
+
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# BASE_MODEL = "SG161222/Realistic_Vision_V2.0"
|
20 |
|
21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
25 |
|
26 |
DEFAULT_CATEGORY = "hair"
|
27 |
|
28 |
+
basepipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
BASE_MODEL,
|
30 |
torch_dtype=torch.float16,
|
31 |
+
# use_safetensors=True,
|
|
|
32 |
)
|
33 |
+
|
34 |
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
|
35 |
|
36 |
basepipeline = basepipeline.to(DEVICE)
|
|
|
52 |
run_task_time = 0
|
53 |
time_cost_str = ''
|
54 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
57 |
generated_image = basepipeline(
|
|
|
60 |
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
61 |
image=input_image,
|
62 |
mask_image=mask_image,
|
|
|
63 |
height=generate_size,
|
64 |
width=generate_size,
|
65 |
guidance_scale=guidance_scale,
|
66 |
num_inference_steps=num_steps,
|
|
|
67 |
).images[0]
|
68 |
|
69 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|