from energy_prediction.EnergyPredictionNorth import EnergyPredictionNorth from energy_prediction.EnergyPredictionSouth import EnergyPredictionSouth from energy_prediction.EnergyPredictionPipeline import EnergyPredictionPipeline def main(): # Energy Prediction North wing EnergyPredictionNorth = EnergyPredictionNorth( model_path="src/energy_prediction/models/lstm_energy_north_01.keras" ) # Energy Prediction South wing def on_message(client, userdata, message): df = EnergyPredictionPipeline.fit(message) if not df is None: out_vav = EnergyPredictionNorth.pipeline( df, EnergyPredictionPipeline.scaler ) broker_address = "localhost" broker_port = 1883 topic = "sensor_data" client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1) print("Connecting to broker") client.on_message = on_message client.connect(broker_address, broker_port) client.subscribe(topic) client.loop_forever() if __name__ == "__main__": main()