{ "cells": [ { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [], "source": [ "import pandas as pd \n", "from datetime import datetime \n", "from datetime import date\n", "import matplotlib.pyplot as plt\n", "# import seaborn as sns\n", "import numpy as np\n", "import pandas as pd\n", "from keras.models import Sequential\n", "from keras.layers import LSTM, Dense\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n", "from keras.callbacks import ModelCheckpoint\n", "\n", "dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n", "all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")" ] }, { "cell_type": "code", "execution_count": 102, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | date | \n", "hvac_N | \n", "hvac_S | \n", "air_temp_set_1 | \n", "solar_radiation_set_1 | \n", "
---|---|---|---|---|---|
0 | \n", "2018-01-01 00:00:00 | \n", "NaN | \n", "NaN | \n", "11.64 | \n", "86.7 | \n", "
1 | \n", "2018-01-01 00:01:00 | \n", "NaN | \n", "NaN | \n", "11.64 | \n", "86.7 | \n", "
2 | \n", "2018-01-01 00:02:00 | \n", "NaN | \n", "NaN | \n", "11.64 | \n", "86.7 | \n", "
3 | \n", "2018-01-01 00:03:00 | \n", "NaN | \n", "NaN | \n", "11.64 | \n", "86.7 | \n", "
4 | \n", "2018-01-01 00:04:00 | \n", "NaN | \n", "NaN | \n", "11.64 | \n", "86.7 | \n", "