{ "cells": [ { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "import pandas as pd \n", "from datetime import datetime \n", "from datetime import date\n", "import matplotlib.pyplot as plt\n", "# import seaborn as sns\n", "import numpy as np\n", "import pandas as pd\n", "from keras.models import Sequential\n", "from keras.layers import LSTM, Dense\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n", "from keras.callbacks import ModelCheckpoint\n", "\n", "dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n", "# all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")\n", "all_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | date | \n", "hvac_N | \n", "hvac_S | \n", "air_temp_set_1 | \n", "solar_radiation_set_1 | \n", "
---|---|---|---|---|---|
0 | \n", "2018-01-01 00:00:00 | \n", "NaN | \n", "NaN | \n", "11.64 | \n", "86.70 | \n", "
1 | \n", "2018-01-01 00:15:00 | \n", "NaN | \n", "NaN | \n", "11.49 | \n", "45.88 | \n", "
2 | \n", "2018-01-01 00:30:00 | \n", "NaN | \n", "NaN | \n", "11.59 | \n", "51.62 | \n", "
3 | \n", "2018-01-01 00:45:00 | \n", "NaN | \n", "NaN | \n", "11.44 | \n", "21.43 | \n", "
4 | \n", "2018-01-01 01:00:00 | \n", "37.400002 | \n", "19.5 | \n", "11.12 | \n", "6.45 | \n", "