import numpy as np from tensorflow.keras.models import load_model import joblib class RTUAnomalizer: model = None kmeans_models = [] def __init__(self, prediction_model_path = None, clustering_model_paths= None, num_inputs = None, num_outputs = None): self.num_inputs = num_inputs self.num_outputs = num_outputs if not prediction_model_path is None and not clustering_model_paths is None: self.load_models(prediction_model_path, clustering_model_paths) def initialize_lists(size=30): initial_values = [0] * size return initial_values.copy(), initial_values.copy(), initial_values.copy() def load_models(self, prediction_model_path, clustering_model_paths): self.model = load_model(prediction_model_path) for path in clustering_model_paths: self.kmeans_models.append(joblib.load(path)) def predict(self, df_new): return self.model.predict(df_new) def calculate_residuals(self,df_trans, pred): actual = df_trans[30,:self.num_outputs+1] resid = actual - pred return actual, resid def resize_prediction(self,pred, df_trans): pred.resize((pred.shape[0], pred.shape[1] + len(df_trans[30,self.num_outputs+1:]))) pred[:, -len(df_trans[30,self.num_outputs+1:]):] = df_trans[30,self.num_outputs+1:] return pred def inverse_transform(scaler, pred, df_trans): pred = scaler.inverse_transform(np.array(pred)) actual = scaler.inverse_transform(np.array([df_trans[30,:]])) return actual, pred def update_lists(actual_list, pred_list, resid_list, actual, pred, resid): actual_list.pop(0) pred_list.pop(0) resid_list.pop(0) actual_list.append(actual[0,1]) pred_list.append(pred[0,1]) resid_list.append(resid[0,1]) return actual_list, pred_list, resid_list def calculate_distances(self,resid): dist = [] for i, model in enumerate(self.kmeans_models): dist.append(np.linalg.norm(resid[:,(i*7)+1:(i*7)+8]-model.cluster_centers_[0], ord=2, axis=1)) return np.array(dist) def pipeline(self, df_new, df_trans, scaler): actual_list, pred_list, resid_list = self.initialize_lists() pred = self.predict(df_new) actual, resid = self.calculate_residuals(df_trans, pred) pred = self.resize_prediction(pred, df_trans) actual, pred = self.inverse_transform(scaler, pred, df_trans) actual_list, pred_list, resid_list = self.update_lists(actual_list, pred_list, resid_list, actual, pred, resid) dist = self.calculate_distances(resid) return actual_list, pred_list, resid_list, dist