Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from transformers import pipeline, AutoTokenizer | |
| st.title('Sentiment Analyser App') | |
| st.write('Welcome to my sentiment analysis app!') | |
| model_options=["sentiment-analysis", "twitter-xlm-roberta-base-sentiment", "sentiment-roberta-large-english"] | |
| form = st.form(key='sentiment-form') | |
| model_type = form.selectbox(label="Select a model", options=model_options) | |
| user_input = form.text_area(label='Enter your text to analyse', value="Hey how are you?") | |
| submit = form.form_submit_button('Submit') | |
| def classification(user_input, type): | |
| if type=="sentiment-analysis": | |
| classifier = pipeline("sentiment-analysis") | |
| elif type=="twitter-xlm-roberta-base-sentiment": | |
| path="cardiffnlp/twitter-xlm-roberta-base-sentiment" | |
| classifier = pipeline("sentiment-analysis", model=path, tokenizer=path) | |
| elif type=="sentiment-roberta-large-english": | |
| path="siebert/sentiment-roberta-large-english" | |
| classifier = pipeline("sentiment-analysis", model=path) | |
| result = classifier(user_input) | |
| return result | |
| if submit: | |
| # resultf = classification(user_input, model_type) | |
| # if model_type=="sentiment-roberta-large-english": | |
| # st.write(str(resultf[0]['label']) + ": " + str(resultf[0]['score'])) | |
| # st.write(str(resultf[1]['label']) + ": " + str(resultf[1]['score'])) | |
| # st.write(str(resultf[2]['label']) + ": " + str(resultf[2]['score'])) | |
| # else: | |
| label = resultf[0]['label'] | |
| score = resultf[0]['score'] | |
| if (label == 'POSITIVE') or (label =='Positive') or (label =='positive'): | |
| st.success(f'{label} sentiment (score: {score})') | |
| else: | |
| st.error(f'{label} sentiment (score: {score})') |