skytnt commited on
Commit
f60cca2
ยท
1 Parent(s): 3b8c740

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -13
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import json
 
2
  import librosa
3
  import numpy as np
4
  import torch
@@ -7,14 +8,14 @@ import commons
7
  import utils
8
  import gradio as gr
9
  from models import SynthesizerTrn
10
- from text import text_to_sequence
11
  from mel_processing import spectrogram_torch
12
 
13
- limitation = True # limit text and audio length
14
 
15
 
16
- def get_text(text, hps):
17
- text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
18
  if hps.data.add_blank:
19
  text_norm = commons.intersperse(text_norm, 0)
20
  text_norm = LongTensor(text_norm)
@@ -22,11 +23,11 @@ def get_text(text, hps):
22
 
23
 
24
  def create_tts_fn(model, hps, speaker_ids):
25
- def tts_fn(text, speaker, speed):
26
- if limitation and len(text) > 60:
27
  return "Error: Text is too long", None
28
  speaker_id = speaker_ids[speaker]
29
- stn_tst = get_text(text, hps)
30
  with no_grad():
31
  x_tst = stn_tst.unsqueeze(0)
32
  x_tst_lengths = LongTensor([stn_tst.size(0)])
@@ -72,6 +73,24 @@ def create_vc_fn(model, hps, speaker_ids):
72
  return vc_fn
73
 
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  if __name__ == '__main__':
76
  models = []
77
  with open("saved_model/names.json", "r", encoding="utf-8") as f:
@@ -92,10 +111,10 @@ if __name__ == '__main__':
92
  speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
93
  speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
94
 
95
- models.append((models_name, cover_path, speakers,
96
  create_tts_fn(model, hps, speaker_ids), create_vc_fn(model, hps, speaker_ids)))
97
 
98
- app = gr.Blocks()
99
 
100
  with app:
101
  gr.Markdown("# Moe Japanese TTS And Voice Conversion Using VITS Model\n\n"
@@ -107,7 +126,7 @@ if __name__ == '__main__':
107
  with gr.Tabs():
108
  with gr.TabItem("TTS"):
109
  with gr.Tabs():
110
- for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
111
  with gr.TabItem(f"model{i}"):
112
  with gr.Column():
113
  gr.Markdown(f"## {model_name}\n\n"
@@ -116,14 +135,31 @@ if __name__ == '__main__':
116
  tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
117
  type="index", value=speakers[0])
118
  tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
 
 
 
 
 
 
 
 
119
  tts_submit = gr.Button("Generate", variant="primary")
120
  tts_output1 = gr.Textbox(label="Output Message")
121
  tts_output2 = gr.Audio(label="Output Audio")
122
- tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3],
 
 
 
 
 
 
123
  [tts_output1, tts_output2])
 
 
 
124
  with gr.TabItem("Voice Conversion"):
125
  with gr.Tabs():
126
- for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
127
  with gr.TabItem(f"model{i}"):
128
  gr.Markdown(f"## {model_name}\n\n"
129
  f"![cover](file/{cover_path})")
@@ -136,4 +172,4 @@ if __name__ == '__main__':
136
  vc_output1 = gr.Textbox(label="Output Message")
137
  vc_output2 = gr.Audio(label="Output Audio")
138
  vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
139
- app.launch(max_threads=10)
 
1
  import json
2
+ import os
3
  import librosa
4
  import numpy as np
5
  import torch
 
8
  import utils
9
  import gradio as gr
10
  from models import SynthesizerTrn
11
+ from text import text_to_sequence, _clean_text
12
  from mel_processing import spectrogram_torch
13
 
14
+ limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
15
 
16
 
17
+ def get_text(text, hps, is_phoneme):
18
+ text_norm = text_to_sequence(text, hps.symbols, [] if is_phoneme else hps.data.text_cleaners)
19
  if hps.data.add_blank:
20
  text_norm = commons.intersperse(text_norm, 0)
21
  text_norm = LongTensor(text_norm)
 
23
 
24
 
25
  def create_tts_fn(model, hps, speaker_ids):
26
+ def tts_fn(text, speaker, speed, is_phoneme):
27
+ if limitation and ((len(text) > 60 and not is_phoneme) or (len(text) > 120 and is_phoneme)):
28
  return "Error: Text is too long", None
29
  speaker_id = speaker_ids[speaker]
30
+ stn_tst = get_text(text, hps, is_phoneme)
31
  with no_grad():
32
  x_tst = stn_tst.unsqueeze(0)
33
  x_tst_lengths = LongTensor([stn_tst.size(0)])
 
73
  return vc_fn
74
 
75
 
76
+ css = """
77
+ #advanced-btn {
78
+ color: white;
79
+ border-color: black;
80
+ background: black;
81
+ font-size: .7rem !important;
82
+ line-height: 19px;
83
+ margin-top: 24px;
84
+ margin-bottom: 12px;
85
+ padding: 2px 8px;
86
+ border-radius: 14px !important;
87
+ }
88
+ #advanced-options {
89
+ display: none;
90
+ margin-bottom: 20px;
91
+ }
92
+ """
93
+
94
  if __name__ == '__main__':
95
  models = []
96
  with open("saved_model/names.json", "r", encoding="utf-8") as f:
 
111
  speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
112
  speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
113
 
114
+ models.append((models_name, cover_path, speakers, hps.symbols,
115
  create_tts_fn(model, hps, speaker_ids), create_vc_fn(model, hps, speaker_ids)))
116
 
117
+ app = gr.Blocks(css=css)
118
 
119
  with app:
120
  gr.Markdown("# Moe Japanese TTS And Voice Conversion Using VITS Model\n\n"
 
126
  with gr.Tabs():
127
  with gr.TabItem("TTS"):
128
  with gr.Tabs():
129
+ for i, (model_name, cover_path, speakers, symbols, tts_fn, vc_fn) in enumerate(models):
130
  with gr.TabItem(f"model{i}"):
131
  with gr.Column():
132
  gr.Markdown(f"## {model_name}\n\n"
 
135
  tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
136
  type="index", value=speakers[0])
137
  tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
138
+ advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
139
+ advanced_options = gr.Column()
140
+ advanced_options.elem_id = "advanced-options"
141
+ with advanced_options:
142
+ phoneme_input = gr.Checkbox(value=False, label="Phoneme input")
143
+ to_phoneme_btn = gr.Button("Covert text to phoneme")
144
+ phoneme_list = gr.Json(label="Phoneme list", value=symbols, elem_id="phoneme_list")
145
+
146
  tts_submit = gr.Button("Generate", variant="primary")
147
  tts_output1 = gr.Textbox(label="Output Message")
148
  tts_output2 = gr.Audio(label="Output Audio")
149
+ advanced_button.click(None, [], [],
150
+ _js="""
151
+ () => {
152
+ const options = document.querySelector("body > gradio-app").shadowRoot.querySelector("#advanced-options");
153
+ options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
154
+ }""")
155
+ tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, phoneme_input],
156
  [tts_output1, tts_output2])
157
+ to_phoneme_btn.click(lambda x: _clean_text(x, hps.data.text_cleaners) if x != "" else x,
158
+ [tts_input1], [tts_input1])
159
+
160
  with gr.TabItem("Voice Conversion"):
161
  with gr.Tabs():
162
+ for i, (model_name, cover_path, speakers, symbols, tts_fn, vc_fn) in enumerate(models):
163
  with gr.TabItem(f"model{i}"):
164
  gr.Markdown(f"## {model_name}\n\n"
165
  f"![cover](file/{cover_path})")
 
172
  vc_output1 = gr.Textbox(label="Output Message")
173
  vc_output2 = gr.Audio(label="Output Audio")
174
  vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
175
+ app.launch()