skytnt commited on
Commit
7dce1b0
Β·
1 Parent(s): a97b461

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -16
app.py CHANGED
@@ -10,6 +10,8 @@ from models import SynthesizerTrn
10
  from text import text_to_sequence
11
  from mel_processing import spectrogram_torch
12
 
 
 
13
 
14
  def get_text(text, hps):
15
  text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
@@ -21,7 +23,7 @@ def get_text(text, hps):
21
 
22
  def create_tts_fn(model, hps, speaker_ids):
23
  def tts_fn(text, speaker, speed):
24
- if len(text) > 150:
25
  return "Error: Text is too long", None
26
  speaker_id = speaker_ids[speaker]
27
  stn_tst = get_text(text, hps)
@@ -31,6 +33,7 @@ def create_tts_fn(model, hps, speaker_ids):
31
  sid = LongTensor([speaker_id])
32
  audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
33
  length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
 
34
  return "Success", (hps.data.sampling_rate, audio)
35
 
36
  return tts_fn
@@ -42,7 +45,7 @@ def create_vc_fn(model, hps, speaker_ids):
42
  return "You need to upload an audio", None
43
  sampling_rate, audio = input_audio
44
  duration = audio.shape[0] / sampling_rate
45
- if duration > 30:
46
  return "Error: Audio is too long", None
47
  original_speaker_id = speaker_ids[original_speaker]
48
  target_speaker_id = speaker_ids[target_speaker]
@@ -52,17 +55,18 @@ def create_vc_fn(model, hps, speaker_ids):
52
  audio = librosa.to_mono(audio.transpose(1, 0))
53
  if sampling_rate != hps.data.sampling_rate:
54
  audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
55
- y = torch.FloatTensor(audio)
56
- y = y.unsqueeze(0)
57
- spec = spectrogram_torch(y, hps.data.filter_length,
58
- hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
59
- center=False)
60
- spec_lengths = LongTensor([spec.size(-1)])
61
- sid_src = LongTensor([original_speaker_id])
62
- sid_tgt = LongTensor([target_speaker_id])
63
  with no_grad():
 
 
 
 
 
 
 
 
64
  audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
65
  0, 0].data.cpu().float().numpy()
 
66
  return "Success", (hps.data.sampling_rate, audio)
67
 
68
  return vc_fn
@@ -103,10 +107,10 @@ if __name__ == '__main__':
103
  with gr.Tabs():
104
  with gr.TabItem("TTS"):
105
  with gr.Tabs():
106
- for i, (models_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
107
  with gr.TabItem(f"model{i}"):
108
  with gr.Column():
109
- gr.Markdown(f"## {models_name}\n\n"
110
  f"![cover](file/{cover_path})")
111
  tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="こんにけは。")
112
  tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
@@ -119,18 +123,19 @@ if __name__ == '__main__':
119
  [tts_output1, tts_output2])
120
  with gr.TabItem("Voice Conversion"):
121
  with gr.Tabs():
122
- for i, (models_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
123
  with gr.TabItem(f"model{i}"):
124
- gr.Markdown(f"## {models_name}\n\n"
125
  f"![cover](file/{cover_path})")
126
  vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
127
  value=speakers[0])
128
  vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
129
  value=speakers[1])
130
- vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
131
  vc_submit = gr.Button("Convert", variant="primary")
132
  vc_output1 = gr.Textbox(label="Output Message")
133
  vc_output2 = gr.Audio(label="Output Audio")
134
  vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
135
 
136
- app.launch()
 
 
10
  from text import text_to_sequence
11
  from mel_processing import spectrogram_torch
12
 
13
+ limitation = True # limit text and audio length
14
+
15
 
16
  def get_text(text, hps):
17
  text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
 
23
 
24
  def create_tts_fn(model, hps, speaker_ids):
25
  def tts_fn(text, speaker, speed):
26
+ if limitation and len(text) > 150:
27
  return "Error: Text is too long", None
28
  speaker_id = speaker_ids[speaker]
29
  stn_tst = get_text(text, hps)
 
33
  sid = LongTensor([speaker_id])
34
  audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
35
  length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
36
+ del stn_tst, x_tst, x_tst_lengths, sid
37
  return "Success", (hps.data.sampling_rate, audio)
38
 
39
  return tts_fn
 
45
  return "You need to upload an audio", None
46
  sampling_rate, audio = input_audio
47
  duration = audio.shape[0] / sampling_rate
48
+ if limitation and duration > 20:
49
  return "Error: Audio is too long", None
50
  original_speaker_id = speaker_ids[original_speaker]
51
  target_speaker_id = speaker_ids[target_speaker]
 
55
  audio = librosa.to_mono(audio.transpose(1, 0))
56
  if sampling_rate != hps.data.sampling_rate:
57
  audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
 
 
 
 
 
 
 
 
58
  with no_grad():
59
+ y = torch.FloatTensor(audio)
60
+ y = y.unsqueeze(0)
61
+ spec = spectrogram_torch(y, hps.data.filter_length,
62
+ hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
63
+ center=False)
64
+ spec_lengths = LongTensor([spec.size(-1)])
65
+ sid_src = LongTensor([original_speaker_id])
66
+ sid_tgt = LongTensor([target_speaker_id])
67
  audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
68
  0, 0].data.cpu().float().numpy()
69
+ del y, spec, spec_lengths, sid_src, sid_tgt
70
  return "Success", (hps.data.sampling_rate, audio)
71
 
72
  return vc_fn
 
107
  with gr.Tabs():
108
  with gr.TabItem("TTS"):
109
  with gr.Tabs():
110
+ for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
111
  with gr.TabItem(f"model{i}"):
112
  with gr.Column():
113
+ gr.Markdown(f"## {model_name}\n\n"
114
  f"![cover](file/{cover_path})")
115
  tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="こんにけは。")
116
  tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
 
123
  [tts_output1, tts_output2])
124
  with gr.TabItem("Voice Conversion"):
125
  with gr.Tabs():
126
+ for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
127
  with gr.TabItem(f"model{i}"):
128
+ gr.Markdown(f"## {model_name}\n\n"
129
  f"![cover](file/{cover_path})")
130
  vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
131
  value=speakers[0])
132
  vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
133
  value=speakers[1])
134
+ vc_input3 = gr.Audio(label="Input Audio (20s limitation)")
135
  vc_submit = gr.Button("Convert", variant="primary")
136
  vc_output1 = gr.Textbox(label="Output Message")
137
  vc_output2 = gr.Audio(label="Output Audio")
138
  vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
139
 
140
+ # app.launch()
141
+ app.queue(client_position_to_load_data=10).launch()